HomeHome Metamath Proof Explorer
Theorem List (p. 426 of 489)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30950)
  Hilbert Space Explorer  Hilbert Space Explorer
(30951-32473)
  Users' Mathboxes  Users' Mathboxes
(32474-48899)
 

Theorem List for Metamath Proof Explorer - 42501-42600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempsrbagres 42501* Restrict a bag of variables in 𝐼 to a bag of variables in 𝐽𝐼. (Contributed by SN, 10-Mar-2025.)
𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝐼)    &   (𝜑𝐹𝐷)       (𝜑 → (𝐹𝐽) ∈ 𝐸)
 
Theoremmplcrngd 42502 The polynomial ring is a commutative ring. (Contributed by SN, 7-Feb-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)       (𝜑𝑃 ∈ CRing)
 
Theoremmplsubrgcl 42503 An element of a polynomial algebra over a subring is an element of the polynomial algebra. (Contributed by SN, 9-Feb-2025.)
𝑊 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐵 = (Base‘𝑊)    &   𝑃 = (𝐼 mPoly 𝑆)    &   𝐶 = (Base‘𝑃)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐹𝐵)       (𝜑𝐹𝐶)
 
Theoremmhmcopsr 42504 The composition of a monoid homomorphism and a power series is a power series. (Contributed by SN, 18-May-2025.)
𝑃 = (𝐼 mPwSer 𝑅)    &   𝑄 = (𝐼 mPwSer 𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Base‘𝑄)    &   (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))    &   (𝜑𝐹𝐵)       (𝜑 → (𝐻𝐹) ∈ 𝐶)
 
Theoremmhmcoaddpsr 42505 Show that the ring homomorphism in rhmpsr 42507 preserves addition. (Contributed by SN, 18-May-2025.)
𝑃 = (𝐼 mPwSer 𝑅)    &   𝑄 = (𝐼 mPwSer 𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Base‘𝑄)    &    + = (+g𝑃)    &    = (+g𝑄)    &   (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))
 
Theoremrhmcomulpsr 42506 Show that the ring homomorphism in rhmpsr 42507 preserves multiplication. (Contributed by SN, 18-May-2025.)
𝑃 = (𝐼 mPwSer 𝑅)    &   𝑄 = (𝐼 mPwSer 𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Base‘𝑄)    &    · = (.r𝑃)    &    = (.r𝑄)    &   (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))
 
Theoremrhmpsr 42507* Provide a ring homomorphism between two power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025.)
𝑃 = (𝐼 mPwSer 𝑅)    &   𝑄 = (𝐼 mPwSer 𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))    &   (𝜑𝐼𝑉)    &   (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))       (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
 
Theoremrhmpsr1 42508* Provide a ring homomorphism between two univariate power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025.)
𝑃 = (PwSer1𝑅)    &   𝑄 = (PwSer1𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))    &   (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))       (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
 
Theoremmplascl0 42509 The zero scalar as a polynomial. (Contributed by SN, 23-Nov-2024.)
𝑊 = (𝐼 mPoly 𝑅)    &   𝐴 = (algSc‘𝑊)    &   𝑂 = (0g𝑅)    &    0 = (0g𝑊)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Ring)       (𝜑 → (𝐴𝑂) = 0 )
 
Theoremmplascl1 42510 The one scalar as a polynomial. (Contributed by SN, 12-Mar-2025.)
𝑊 = (𝐼 mPoly 𝑅)    &   𝐴 = (algSc‘𝑊)    &   𝑂 = (1r𝑅)    &    1 = (1r𝑊)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Ring)       (𝜑 → (𝐴𝑂) = 1 )
 
Theoremmplmapghm 42511* The function 𝐻 mapping polynomials 𝑝 to their coefficient given a bag of variables 𝐹 is a group homomorphism. (Contributed by SN, 15-Mar-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝐻 = (𝑝𝐵 ↦ (𝑝𝐹))    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   (𝜑𝐹𝐷)       (𝜑𝐻 ∈ (𝑃 GrpHom 𝑅))
 
Theoremevl0 42512 The zero polynomial evaluates to zero. (Contributed by SN, 23-Nov-2024.)
𝑄 = (𝐼 eval 𝑅)    &   𝐵 = (Base‘𝑅)    &   𝑊 = (𝐼 mPoly 𝑅)    &   𝑂 = (0g𝑅)    &    0 = (0g𝑊)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)       (𝜑 → (𝑄0 ) = ((𝐵m 𝐼) × {𝑂}))
 
Theoremevlscl 42513 A polynomial over the ring 𝑅 evaluates to an element in 𝑅. (Contributed by SN, 12-Mar-2025.)
𝑄 = ((𝐼 evalSub 𝑅)‘𝑆)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑅s 𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐾 = (Base‘𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑅))    &   (𝜑𝐹𝐵)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → ((𝑄𝐹)‘𝐴) ∈ 𝐾)
 
Theoremevlsval3 42514* Give a formula for the polynomial evaluation homomorphism. (Contributed by SN, 26-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝐵 = (Base‘𝑃)    &   𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐾 = (Base‘𝑆)    &   𝑈 = (𝑆s 𝑅)    &   𝑇 = (𝑆s (𝐾m 𝐼))    &   𝑀 = (mulGrp‘𝑇)    &    = (.g𝑀)    &    · = (.r𝑇)    &   𝐸 = (𝑝𝐵 ↦ (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑀 Σg (𝑏f 𝐺))))))    &   𝐹 = (𝑥𝑅 ↦ ((𝐾m 𝐼) × {𝑥}))    &   𝐺 = (𝑥𝐼 ↦ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)))    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))       (𝜑𝑄 = 𝐸)
 
Theoremevlsvval 42515* Give a formula for the evaluation of a polynomial. (Contributed by SN, 9-Feb-2025.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝐵 = (Base‘𝑃)    &   𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐾 = (Base‘𝑆)    &   𝑈 = (𝑆s 𝑅)    &   𝑇 = (𝑆s (𝐾m 𝐼))    &   𝑀 = (mulGrp‘𝑇)    &    = (.g𝑀)    &    · = (.r𝑇)    &   𝐹 = (𝑥𝑅 ↦ ((𝐾m 𝐼) × {𝑥}))    &   𝐺 = (𝑥𝐼 ↦ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)))    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐴𝐵)       (𝜑 → (𝑄𝐴) = (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝐴𝑏)) · (𝑀 Σg (𝑏f 𝐺))))))
 
Theoremevlsvvvallem 42516* Lemma for evlsvvval 42518 akin to psrbagev2 22125. (Contributed by SN, 6-Mar-2025.)
𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐾 = (Base‘𝑆)    &   𝑀 = (mulGrp‘𝑆)    &    = (.g𝑀)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑𝐵𝐷)       (𝜑 → (𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣)))) ∈ 𝐾)
 
Theoremevlsvvvallem2 42517* Lemma for theorems using evlsvvval 42518. (Contributed by SN, 8-Mar-2025.)
𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐾 = (Base‘𝑆)    &   𝑀 = (mulGrp‘𝑆)    &    = (.g𝑀)    &    · = (.r𝑆)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐹𝐵)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) finSupp (0g𝑆))
 
Theoremevlsvvval 42518* Give a formula for the evaluation of a polynomial given assignments from variables to values. This is the sum of the evaluations for each term (corresponding to a bag of variables), that is, the coefficient times the product of each variable raised to the corresponding power. (Contributed by SN, 5-Mar-2025.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝐵 = (Base‘𝑃)    &   𝑈 = (𝑆s 𝑅)    &   𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐾 = (Base‘𝑆)    &   𝑀 = (mulGrp‘𝑆)    &    = (.g𝑀)    &    · = (.r𝑆)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐹𝐵)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → ((𝑄𝐹)‘𝐴) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))))
 
Theoremevlsscaval 42519 Polynomial evaluation builder for a scalar. Compare evl1scad 22360. Note that scalar multiplication by 𝑋 is the same as vector multiplication by (𝐴𝑋) by asclmul1 21929. (Contributed by SN, 27-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐴 = (algSc‘𝑃)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝑋𝑅)    &   (𝜑𝐿 ∈ (𝐾m 𝐼))       (𝜑 → ((𝐴𝑋) ∈ 𝐵 ∧ ((𝑄‘(𝐴𝑋))‘𝐿) = 𝑋))
 
Theoremevlsvarval 42520 Polynomial evaluation builder for a variable. (Contributed by SN, 27-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑉 = (𝐼 mVar 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝑋𝐼)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → ((𝑉𝑋) ∈ 𝐵 ∧ ((𝑄‘(𝑉𝑋))‘𝐴) = (𝐴𝑋)))
 
Theoremevlsbagval 42521* Polynomial evaluation builder for a bag of variables. EDITORIAL: This theorem should stay in my mathbox until there's another use, since 0 and 1 using 𝑈 instead of 𝑆 may not be convenient. (Contributed by SN, 29-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝑊 = (Base‘𝑃)    &   𝐾 = (Base‘𝑆)    &   𝑀 = (mulGrp‘𝑆)    &    = (.g𝑀)    &    0 = (0g𝑈)    &    1 = (1r𝑈)    &   𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐹 = (𝑠𝐷 ↦ if(𝑠 = 𝐵, 1 , 0 ))    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑𝐵𝐷)       (𝜑 → (𝐹𝑊 ∧ ((𝑄𝐹)‘𝐴) = (𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))))
 
Theoremevlsexpval 42522 Polynomial evaluation builder for exponentiation. (Contributed by SN, 27-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝐼𝑍)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))    &    = (.g‘(mulGrp‘𝑃))    &    = (.g‘(mulGrp‘𝑆))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝑁 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 𝑀))‘𝐴) = (𝑁 𝑉)))
 
Theoremevlsaddval 42523 Polynomial evaluation builder for addition. (Contributed by SN, 27-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝐼𝑍)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))    &   (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))    &    = (+g𝑃)    &    + = (+g𝑆)       (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 + 𝑊)))
 
Theoremevlsmulval 42524 Polynomial evaluation builder for multiplication. (Contributed by SN, 27-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝐼𝑍)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))    &   (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))    &    = (.r𝑃)    &    · = (.r𝑆)       (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 · 𝑊)))
 
Theoremevlsmaprhm 42525* The function 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝑋 is a ring homomorphism. Compare evls1maprhm 22401. (Contributed by SN, 12-Mar-2025.)
𝑄 = ((𝐼 evalSub 𝑅)‘𝑆)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑅s 𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐾 = (Base‘𝑅)    &   𝐹 = (𝑝𝐵 ↦ ((𝑄𝑝)‘𝐴))    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑅))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑𝐹 ∈ (𝑃 RingHom 𝑅))
 
Theoremevlsevl 42526 Evaluation in a subring is the same as evaluation in the ring itself. (Contributed by SN, 9-Feb-2025.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑂 = (𝐼 eval 𝑆)    &   𝑊 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐵 = (Base‘𝑊)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐹𝐵)       (𝜑 → (𝑄𝐹) = (𝑂𝐹))
 
Theoremevlcl 42527 A polynomial over the ring 𝑅 evaluates to an element in 𝑅. (Contributed by SN, 12-Mar-2025.)
𝑄 = (𝐼 eval 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐾 = (Base‘𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐹𝐵)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → ((𝑄𝐹)‘𝐴) ∈ 𝐾)
 
Theoremevlvvval 42528* Give a formula for the evaluation of a polynomial given assignments from variables to values. (Contributed by SN, 5-Mar-2025.)
𝑄 = (𝐼 eval 𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐾 = (Base‘𝑅)    &   𝑀 = (mulGrp‘𝑅)    &    = (.g𝑀)    &    · = (.r𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐹𝐵)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → ((𝑄𝐹)‘𝐴) = (𝑅 Σg (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))))
 
Theoremevlvvvallem 42529* Lemma for theorems using evlvvval 42528. Version of evlsvvvallem2 42517 using df-evl 22122. (Contributed by SN, 11-Mar-2025.)
𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐾 = (Base‘𝑅)    &   𝑀 = (mulGrp‘𝑅)    &    = (.g𝑀)    &    · = (.r𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐹𝐵)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) finSupp (0g𝑅))
 
Theoremevladdval 42530 Polynomial evaluation builder for addition. (Contributed by SN, 9-Feb-2025.)
𝑄 = (𝐼 eval 𝑆)    &   𝑃 = (𝐼 mPoly 𝑆)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &    = (+g𝑃)    &    + = (+g𝑆)    &   (𝜑𝐼𝑍)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))    &   (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))       (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 + 𝑊)))
 
Theoremevlmulval 42531 Polynomial evaluation builder for multiplication. (Contributed by SN, 18-Feb-2025.)
𝑄 = (𝐼 eval 𝑆)    &   𝑃 = (𝐼 mPoly 𝑆)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &    = (.r𝑃)    &    · = (.r𝑆)    &   (𝜑𝐼𝑍)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))    &   (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))       (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 · 𝑊)))
 
Theoremselvcllem1 42532 𝑇 is an associative algebra. For simplicity, 𝐼 stands for (𝐼𝐽) and we have 𝐽𝑊 instead of 𝐽𝐼. TODO-SN: In practice, this "simplification" makes the lemmas harder to use. (Contributed by SN, 15-Dec-2023.)
𝑈 = (𝐼 mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝑊)    &   (𝜑𝑅 ∈ CRing)       (𝜑𝑇 ∈ AssAlg)
 
Theoremselvcllem2 42533 𝐷 is a ring homomorphism. (Contributed by SN, 15-Dec-2023.)
𝑈 = (𝐼 mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐶 = (algSc‘𝑇)    &   𝐷 = (𝐶 ∘ (algSc‘𝑈))    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝑊)    &   (𝜑𝑅 ∈ CRing)       (𝜑𝐷 ∈ (𝑅 RingHom 𝑇))
 
Theoremselvcllem3 42534 The third argument passed to evalSub is in the domain. (Contributed by SN, 15-Dec-2023.)
𝑈 = (𝐼 mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐶 = (algSc‘𝑇)    &   𝐷 = (𝐶 ∘ (algSc‘𝑈))    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝑊)    &   (𝜑𝑅 ∈ CRing)       (𝜑 → ran 𝐷 ∈ (SubRing‘𝑇))
 
Theoremselvcllemh 42535 Apply the third argument (selvcllem3 42534) to show that 𝑄 is a (ring) homomorphism. (Contributed by SN, 5-Nov-2023.)
𝑈 = ((𝐼𝐽) mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐶 = (algSc‘𝑇)    &   𝐷 = (𝐶 ∘ (algSc‘𝑈))    &   𝑄 = ((𝐼 evalSub 𝑇)‘ran 𝐷)    &   𝑊 = (𝐼 mPoly 𝑆)    &   𝑆 = (𝑇s ran 𝐷)    &   𝑋 = (𝑇s (𝐵m 𝐼))    &   𝐵 = (Base‘𝑇)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐽𝐼)       (𝜑𝑄 ∈ (𝑊 RingHom 𝑋))
 
Theoremselvcllem4 42536 The fourth argument passed to evalSub is in the domain (a polynomial in (𝐼 mPoly (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))). (Contributed by SN, 5-Nov-2023.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝑈 = ((𝐼𝐽) mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐶 = (algSc‘𝑇)    &   𝐷 = (𝐶 ∘ (algSc‘𝑈))    &   𝑆 = (𝑇s ran 𝐷)    &   𝑊 = (𝐼 mPoly 𝑆)    &   𝑋 = (Base‘𝑊)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐽𝐼)    &   (𝜑𝐹𝐵)       (𝜑 → (𝐷𝐹) ∈ 𝑋)
 
Theoremselvcllem5 42537* The fifth argument passed to evalSub is in the domain (a function 𝐼𝐸). (Contributed by SN, 22-Feb-2024.)
𝑈 = ((𝐼𝐽) mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐶 = (algSc‘𝑇)    &   𝐸 = (Base‘𝑇)    &   𝐹 = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐽𝐼)       (𝜑𝐹 ∈ (𝐸m 𝐼))
 
Theoremselvcl 42538 Closure of the "variable selection" function. (Contributed by SN, 22-Feb-2024.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝑈 = ((𝐼𝐽) mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐸 = (Base‘𝑇)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐽𝐼)    &   (𝜑𝐹𝐵)       (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ 𝐸)
 
Theoremselvval2 42539* Value of the "variable selection" function. Convert selvval 22162 into a simpler form by using evlsevl 42526. (Contributed by SN, 9-Feb-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝑈 = ((𝐼𝐽) mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐶 = (algSc‘𝑇)    &   𝐷 = (𝐶 ∘ (algSc‘𝑈))    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐽𝐼)    &   (𝜑𝐹𝐵)       (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = (((𝐼 eval 𝑇)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
 
Theoremselvvvval 42540* Recover the original polynomial from a selectVars application. (Contributed by SN, 15-Mar-2025.)
𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐽𝐼)    &   (𝜑𝐹𝐵)    &   (𝜑𝑌𝐷)       (𝜑 → (((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹)‘(𝑌𝐽))‘(𝑌 ↾ (𝐼𝐽))) = (𝐹𝑌))
 
Theoremevlselvlem 42541* Lemma for evlselv 42542. Used to re-index to and from bags of variables in 𝐼 and bags of variables in the subsets 𝐽 and 𝐼𝐽. (Contributed by SN, 10-Mar-2025.)
𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}    &   𝐶 = {𝑓 ∈ (ℕ0m (𝐼𝐽)) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝐻 = (𝑐𝐶, 𝑒𝐸 ↦ (𝑐𝑒))    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝐼)       (𝜑𝐻:(𝐶 × 𝐸)–1-1-onto𝐷)
 
Theoremevlselv 42542 Evaluating a selection of variable assignments, then evaluating the rest of the variables, is the same as evaluating with all assignments. (Contributed by SN, 10-Mar-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐾 = (Base‘𝑅)    &   𝐵 = (Base‘𝑃)    &   𝑈 = ((𝐼𝐽) mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐿 = (algSc‘𝑈)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐽𝐼)    &   (𝜑𝐹𝐵)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → ((((𝐼𝐽) eval 𝑅)‘(((𝐽 eval 𝑈)‘(((𝐼 selectVars 𝑅)‘𝐽)‘𝐹))‘(𝐿 ∘ (𝐴𝐽))))‘(𝐴 ↾ (𝐼𝐽))) = (((𝐼 eval 𝑅)‘𝐹)‘𝐴))
 
Theoremselvadd 42543 The "variable selection" function is additive. (Contributed by SN, 7-Feb-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &    + = (+g𝑃)    &   𝑈 = ((𝐼𝐽) mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &    = (+g𝑇)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐽𝐼)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘(𝐹 + 𝐺)) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) (((𝐼 selectVars 𝑅)‘𝐽)‘𝐺)))
 
Theoremselvmul 42544 The "variable selection" function is multiplicative. (Contributed by SN, 18-Feb-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &    · = (.r𝑃)    &   𝑈 = ((𝐼𝐽) mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &    = (.r𝑇)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐽𝐼)    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘(𝐹 · 𝐺)) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) (((𝐼 selectVars 𝑅)‘𝐽)‘𝐺)))
 
Theoremfsuppind 42545* Induction on functions 𝐹:𝐴𝐵 with finite support, or in other words the base set of the free module (see frlmelbas 21799 and frlmplusgval 21807). This theorem is structurally general for polynomial proof usage (see mplelbas 22034 and mpladd 22052). Note that hypothesis 0 is redundant when 𝐼 is nonempty. (Contributed by SN, 18-May-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐼𝑉)    &   (𝜑 → (𝐼 × { 0 }) ∈ 𝐻)    &   ((𝜑 ∧ (𝑎𝐼𝑏𝐵)) → (𝑥𝐼 ↦ if(𝑥 = 𝑎, 𝑏, 0 )) ∈ 𝐻)    &   ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥f + 𝑦) ∈ 𝐻)       ((𝜑 ∧ (𝑋:𝐼𝐵𝑋 finSupp 0 )) → 𝑋𝐻)
 
Theoremfsuppssindlem1 42546* Lemma for fsuppssind 42548. Functions are zero outside of their support. (Contributed by SN, 15-Jul-2024.)
(𝜑0𝑊)    &   (𝜑𝐼𝑉)    &   (𝜑𝐹:𝐼𝐵)    &   (𝜑 → (𝐹 supp 0 ) ⊆ 𝑆)       (𝜑𝐹 = (𝑥𝐼 ↦ if(𝑥𝑆, ((𝐹𝑆)‘𝑥), 0 )))
 
Theoremfsuppssindlem2 42547* Lemma for fsuppssind 42548. Write a function as a union. (Contributed by SN, 15-Jul-2024.)
(𝜑𝐵𝑊)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆𝐼)       (𝜑 → (𝐹 ∈ {𝑓 ∈ (𝐵m 𝑆) ∣ (𝑥𝐼 ↦ if(𝑥𝑆, (𝑓𝑥), 0 )) ∈ 𝐻} ↔ (𝐹:𝑆𝐵 ∧ (𝐹 ∪ ((𝐼𝑆) × { 0 })) ∈ 𝐻)))
 
Theoremfsuppssind 42548* Induction on functions 𝐹:𝐴𝐵 with finite support (see fsuppind 42545) whose supports are subsets of 𝑆. (Contributed by SN, 15-Jun-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆𝐼)    &   (𝜑 → (𝐼 × { 0 }) ∈ 𝐻)    &   ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐼 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐻)    &   ((𝜑 ∧ (𝑥𝐻𝑦𝐻)) → (𝑥f + 𝑦) ∈ 𝐻)    &   (𝜑𝑋:𝐼𝐵)    &   (𝜑𝑋 finSupp 0 )    &   (𝜑 → (𝑋 supp 0 ) ⊆ 𝑆)       (𝜑𝑋𝐻)
 
Theoremmhpind 42549* The homogeneous polynomials of degree 𝑁 are generated by the terms of degree 𝑁 and addition. (Contributed by SN, 28-Jul-2024.)
𝐻 = (𝐼 mHomP 𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑃 = (𝐼 mPoly 𝑅)    &    + = (+g𝑃)    &   𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝑆 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}    &   (𝜑𝑅 ∈ Grp)    &   (𝜑𝑋 ∈ (𝐻𝑁))    &   (𝜑 → (𝐷 × { 0 }) ∈ 𝐺)    &   ((𝜑 ∧ (𝑎𝑆𝑏𝐵)) → (𝑠𝐷 ↦ if(𝑠 = 𝑎, 𝑏, 0 )) ∈ 𝐺)    &   ((𝜑 ∧ (𝑥 ∈ ((𝐻𝑁) ∩ 𝐺) ∧ 𝑦 ∈ ((𝐻𝑁) ∩ 𝐺))) → (𝑥 + 𝑦) ∈ 𝐺)       (𝜑𝑋𝐺)
 
Theoremevlsmhpvvval 42550* Give a formula for the evaluation of a homogeneous polynomial given assignments from variables to values. The difference between this and evlsvvval 42518 is that 𝑏𝐷 is restricted to 𝑏𝐺, that is, we can evaluate an 𝑁-th degree homogeneous polynomial over just the terms where the sum of all variable degrees is 𝑁. (Contributed by SN, 5-Mar-2025.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝐻 = (𝐼 mHomP 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐺 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}    &   𝐾 = (Base‘𝑆)    &   𝑀 = (mulGrp‘𝑆)    &    = (.g𝑀)    &    · = (.r𝑆)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐹 ∈ (𝐻𝑁))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → ((𝑄𝐹)‘𝐴) = (𝑆 Σg (𝑏𝐺 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))))
 
Theoremmhphflem 42551* Lemma for mhphf 42552. Add several multiples of 𝐿 together, in a case where the total amount of multiplies is 𝑁. (Contributed by SN, 30-Jul-2024.)
𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐻 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}    &   𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   (𝜑𝐼𝑉)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐿𝐵)    &   (𝜑𝑁 ∈ ℕ0)       ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (𝑁 · 𝐿))
 
Theoremmhphf 42552 A homogeneous polynomial defines a homogeneous function. Equivalently, an algebraic form is a homogeneous function. (An algebraic form is the function corresponding to a homogeneous polynomial, which in this case is the (𝑄𝑋) which corresponds to 𝑋). (Contributed by SN, 28-Jul-2024.) (Proof shortened by SN, 8-Mar-2025.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝐻 = (𝐼 mHomP 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &    · = (.r𝑆)    &    = (.g‘(mulGrp‘𝑆))    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐿𝑅)    &   (𝜑𝑋 ∈ (𝐻𝑁))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
 
Theoremmhphf2 42553 A homogeneous polynomial defines a homogeneous function; this is mhphf 42552 with simpler notation in the conclusion in exchange for a complex definition of , which is based on frlmvscafval 21809 but without the finite support restriction (frlmpws 21793, frlmbas 21798) on the assignments 𝐴 from variables to values.

TODO?: Polynomials (df-mpl 21954) are defined to have a finite amount of terms (of finite degree). As such, any assignment may be replaced by an assignment with finite support (as only a finite amount of variables matter in a given polynomial, even if the set of variables is infinite). So the finite support restriction can be assumed without loss of generality. (Contributed by SN, 11-Nov-2024.)

𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝐻 = (𝐼 mHomP 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &    = ( ·𝑠 ‘((ringLMod‘𝑆) ↑s 𝐼))    &    · = (.r𝑆)    &    = (.g‘(mulGrp‘𝑆))    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐿𝑅)    &   (𝜑𝑋 ∈ (𝐻𝑁))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
 
Theoremmhphf3 42554 A homogeneous polynomial defines a homogeneous function; this is mhphf2 42553 with the finite support restriction (frlmpws 21793, frlmbas 21798) on the assignments 𝐴 from variables to values. See comment of mhphf2 42553. (Contributed by SN, 23-Nov-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝐻 = (𝐼 mHomP 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐹 = (𝑆 freeLMod 𝐼)    &   𝑀 = (Base‘𝐹)    &    = ( ·𝑠𝐹)    &    · = (.r𝑆)    &    = (.g‘(mulGrp‘𝑆))    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐿𝑅)    &   (𝜑𝑋 ∈ (𝐻𝑁))    &   (𝜑𝐴𝑀)       (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
 
Theoremmhphf4 42555 A homogeneous polynomial defines a homogeneous function; this is mhphf3 42554 with evalSub collapsed to eval. (Contributed by SN, 23-Nov-2024.)
𝑄 = (𝐼 eval 𝑆)    &   𝐻 = (𝐼 mHomP 𝑆)    &   𝐾 = (Base‘𝑆)    &   𝐹 = (𝑆 freeLMod 𝐼)    &   𝑀 = (Base‘𝐹)    &    = ( ·𝑠𝐹)    &    · = (.r𝑆)    &    = (.g‘(mulGrp‘𝑆))    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝐿𝐾)    &   (𝜑𝑋 ∈ (𝐻𝑁))    &   (𝜑𝐴𝑀)       (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
 
21.30.7  Projective spaces

Looking at a corner in 3D space, one can see three right angles. It is impossible to draw three lines in 2D space such that any two of these lines are perpendicular, but a good enough representation is made by casting lines from the 2D surface. Points along the same cast line are collapsed into one point on the 2D surface.

In many cases, the 2D surface is smaller than whatever needs to be represented. If the lines cast were perpendicular to the 2D surface, then only areas as small as the 2D surface could be represented. To fix this, the lines need to get further apart as they go farther from the 2D surface. On the other side of the 2D surface the lines will get closer together and intersect at a point (because it's defined that way).

From this perspective, two parallel lines in 3D space will be represented by two lines that seem to intersect at a point "at infinity". Considering all maximal classes of parallel lines on a 2D plane in 3D space, these classes will all appear to intersect at different points at infinity, forming a line at infinity. Therefore the real projective plane can be thought of as the real affine plane together with the line at infinity.

The projective plane takes care of some exceptions that may be found in the affine plane. For example, consider the curve that is the zeroes of 𝑦 = 𝑥↑2. Any line connecting the point (0, 1) to the x-axis intersects with the curve twice, except for the vertical line between (0, 1) and (0, 0). In the projective plane, the curve becomes an ellipse and there is no exception.

While it may not seem like it, points at infinity and points corresponding to the affine plane are the same type of point. Consider a line going through the origin in 3D (affine) space. Either it intersects the plane 𝑧 = 1 once, or it is entirely within the plane 𝑧 = 0. If it is entirely within the plane 𝑧 = 0, then it corresponds to the point at infinity intersecting all lines on the plane 𝑧 = 1 with the same slope. Else it corresponds to the point in the 2D plane 𝑧 = 1 that it intersects. So there is a bijection between 3D lines through the origin and points on the real projective plane.

The concept of projective spaces generalizes the projective plane to any dimension.

 
Syntaxcprjsp 42556 Extend class notation with the projective space function.
class ℙ𝕣𝕠𝕛
 
Definitiondf-prjsp 42557* Define the projective space function. In the bijection between 3D lines through the origin and points in the projective plane (see section comment), this is equivalent to making any two 3D points (excluding the origin) equivalent iff one is a multiple of another. This definition does not quite give all the properties needed, since the scalars of a left vector space can be "less dense" than the vectors (for example, making equivalent rational multiples of real numbers). Compare df-lsatoms 38932. (Contributed by BJ and SN, 29-Apr-2023.)
ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
 
Theoremprjspval 42558* Value of the projective space function, which is also known as the projectivization of 𝑉. (Contributed by Steven Nguyen, 29-Apr-2023.)
𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})    &    · = ( ·𝑠𝑉)    &   𝑆 = (Scalar‘𝑉)    &   𝐾 = (Base‘𝑆)       (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = (𝐵 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}))
 
Theoremprjsprel 42559* Utility theorem regarding the relation used in ℙ𝕣𝕠𝕛. (Contributed by Steven Nguyen, 29-Apr-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}       (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
 
Theoremprjspertr 42560* The relation in ℙ𝕣𝕠𝕛 is transitive. (Contributed by Steven Nguyen, 1-May-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}    &   𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})    &   𝑆 = (Scalar‘𝑉)    &    · = ( ·𝑠𝑉)    &   𝐾 = (Base‘𝑆)       ((𝑉 ∈ LMod ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
 
Theoremprjsperref 42561* The relation in ℙ𝕣𝕠𝕛 is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}    &   𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})    &   𝑆 = (Scalar‘𝑉)    &    · = ( ·𝑠𝑉)    &   𝐾 = (Base‘𝑆)       (𝑉 ∈ LMod → (𝑋𝐵𝑋 𝑋))
 
Theoremprjspersym 42562* The relation in ℙ𝕣𝕠𝕛 is symmetric. (Contributed by Steven Nguyen, 1-May-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}    &   𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})    &   𝑆 = (Scalar‘𝑉)    &    · = ( ·𝑠𝑉)    &   𝐾 = (Base‘𝑆)       ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → 𝑌 𝑋)
 
Theoremprjsper 42563* The relation used to define ℙ𝕣𝕠𝕛 is an equivalence relation. (Contributed by Steven Nguyen, 1-May-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}    &   𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})    &   𝑆 = (Scalar‘𝑉)    &    · = ( ·𝑠𝑉)    &   𝐾 = (Base‘𝑆)       (𝑉 ∈ LVec → Er 𝐵)
 
Theoremprjspreln0 42564* Two nonzero vectors are equivalent by a nonzero scalar. (Contributed by Steven Nguyen, 31-May-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}    &   𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})    &   𝑆 = (Scalar‘𝑉)    &    · = ( ·𝑠𝑉)    &   𝐾 = (Base‘𝑆)    &    0 = (0g𝑆)       (𝑉 ∈ LVec → (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑚 · 𝑌))))
 
Theoremprjspvs 42565* A nonzero multiple of a vector is equivalent to the vector. (Contributed by Steven Nguyen, 6-Jun-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}    &   𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})    &   𝑆 = (Scalar‘𝑉)    &    · = ( ·𝑠𝑉)    &   𝐾 = (Base‘𝑆)    &    0 = (0g𝑆)       ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) 𝑋)
 
Theoremprjsprellsp 42566* Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}    &   𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})    &   𝑆 = (Scalar‘𝑉)    &    · = ( ·𝑠𝑉)    &   𝐾 = (Base‘𝑆)    &   𝑁 = (LSpan‘𝑉)       ((𝑉 ∈ LVec ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
 
Theoremprjspeclsp 42567* The vectors equivalent to a vector 𝑋 are the nonzero vectors in the span of 𝑋. (Contributed by Steven Nguyen, 6-Jun-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}    &   𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})    &   𝑆 = (Scalar‘𝑉)    &    · = ( ·𝑠𝑉)    &   𝐾 = (Base‘𝑆)    &   𝑁 = (LSpan‘𝑉)       ((𝑉 ∈ LVec ∧ 𝑋𝐵) → [𝑋] = ((𝑁‘{𝑋}) ∖ {(0g𝑉)}))
 
Theoremprjspval2 42568* Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023.)
0 = (0g𝑉)    &   𝐵 = ((Base‘𝑉) ∖ { 0 })    &   𝑁 = (LSpan‘𝑉)       (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = 𝑧𝐵 {((𝑁‘{𝑧}) ∖ { 0 })})
 
Syntaxcprjspn 42569 Extend class notation with the n-dimensional projective space function.
class ℙ𝕣𝕠𝕛n
 
Definitiondf-prjspn 42570* Define the n-dimensional projective space function. A projective space of dimension 1 is a projective line, and a projective space of dimension 2 is a projective plane. Compare df-ehl 25439. This space is considered n-dimensional because the vector space (𝑘 freeLMod (0...𝑛)) is (n+1)-dimensional and the ℙ𝕣𝕠𝕛 function returns equivalence classes with respect to a linear (1-dimensional) relation. (Contributed by BJ and Steven Nguyen, 29-Apr-2023.)
ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))))
 
Theoremprjspnval 42571 Value of the n-dimensional projective space function. (Contributed by Steven Nguyen, 1-May-2023.)
((𝑁 ∈ ℕ0𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))))
 
Theoremprjspnerlem 42572* A lemma showing that the equivalence relation used in prjspnval2 42573 and the equivalence relation used in prjspval 42558 are equal, but only with the antecedent 𝐾 ∈ DivRing. (Contributed by SN, 15-Jul-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}    &   𝑊 = (𝐾 freeLMod (0...𝑁))    &   𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})    &   𝑆 = (Base‘𝐾)    &    · = ( ·𝑠𝑊)       (𝐾 ∈ DivRing → = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))})
 
Theoremprjspnval2 42573* Value of the n-dimensional projective space function, expanded. (Contributed by Steven Nguyen, 15-Jul-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}    &   𝑊 = (𝐾 freeLMod (0...𝑁))    &   𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})    &   𝑆 = (Base‘𝐾)    &    · = ( ·𝑠𝑊)       ((𝑁 ∈ ℕ0𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / ))
 
Theoremprjspner 42574* The relation used to define ℙ𝕣𝕠𝕛 (and indirectly ℙ𝕣𝕠𝕛n through df-prjspn 42570) is an equivalence relation. This is a lemma that converts the equivalence relation used in results like prjspertr 42560 and prjspersym 42562 (see prjspnerlem 42572). Several theorems are covered in one thanks to the theorems around df-er 8763. (Contributed by SN, 14-Aug-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}    &   𝑊 = (𝐾 freeLMod (0...𝑁))    &   𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})    &   𝑆 = (Base‘𝐾)    &    · = ( ·𝑠𝑊)    &   (𝜑𝐾 ∈ DivRing)       (𝜑 Er 𝐵)
 
Theoremprjspnvs 42575* A nonzero multiple of a vector is equivalent to the vector. This converts the equivalence relation used in prjspvs 42565 (see prjspnerlem 42572). (Contributed by SN, 8-Aug-2024.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}    &   𝑊 = (𝐾 freeLMod (0...𝑁))    &   𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})    &   𝑆 = (Base‘𝐾)    &    · = ( ·𝑠𝑊)    &    0 = (0g𝐾)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝐶𝑆)    &   (𝜑𝐶0 )       (𝜑 → (𝐶 · 𝑋) 𝑋)
 
Theoremprjspnssbas 42576 A projective point spans a subset of the (nonzero) affine points. (Contributed by SN, 17-Jan-2025.)
𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)    &   𝑊 = (𝐾 freeLMod (0...𝑁))    &   𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ DivRing)       (𝜑𝑃 ⊆ 𝒫 𝐵)
 
Theoremprjspnn0 42577 A projective point is nonempty. (Contributed by SN, 17-Jan-2025.)
𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)    &   𝑊 = (𝐾 freeLMod (0...𝑁))    &   𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑𝐴𝑃)       (𝜑𝐴 ≠ ∅)
 
Theorem0prjspnlem 42578 Lemma for 0prjspn 42583. The given unit vector is a nonzero vector. (Contributed by Steven Nguyen, 16-Jul-2023.)
𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})    &   𝑊 = (𝐾 freeLMod (0...0))    &    1 = ((𝐾 unitVec (0...0))‘0)       (𝐾 ∈ DivRing → 1𝐵)
 
Theoremprjspnfv01 42579* Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the value of the zeroth coordinate). (Contributed by SN, 13-Aug-2023.)
𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))    &   𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})    &   𝑊 = (𝐾 freeLMod (0...𝑁))    &    · = ( ·𝑠𝑊)    &    0 = (0g𝐾)    &    1 = (1r𝐾)    &   𝐼 = (invr𝐾)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑋𝐵)       (𝜑 → ((𝐹𝑋)‘0) = if((𝑋‘0) = 0 , 0 , 1 ))
 
Theoremprjspner01 42580* Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the equivalence). (Contributed by SN, 13-Aug-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}    &   𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))    &   𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})    &   𝑊 = (𝐾 freeLMod (0...𝑁))    &    · = ( ·𝑠𝑊)    &   𝑆 = (Base‘𝐾)    &    0 = (0g𝐾)    &   𝐼 = (invr𝐾)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑋𝐵)       (𝜑𝑋 (𝐹𝑋))
 
Theoremprjspner1 42581* Two vectors whose zeroth coordinate is nonzero are equivalent if and only if they have the same representative in the (n-1)-dimensional affine subspace { x0 = 1 } . For example, vectors in 3D space whose 𝑥 coordinate is nonzero are equivalent iff they intersect at the plane 𝑥 = 1 at the same point (also see section header). (Contributed by SN, 13-Aug-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}    &   𝐹 = (𝑏𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏)))    &   𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})    &   𝑊 = (𝐾 freeLMod (0...𝑁))    &    · = ( ·𝑠𝑊)    &   𝑆 = (Base‘𝐾)    &    0 = (0g𝐾)    &   𝐼 = (invr𝐾)    &   (𝜑𝐾 ∈ DivRing)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑 → (𝑋‘0) ≠ 0 )    &   (𝜑 → (𝑌‘0) ≠ 0 )       (𝜑 → (𝑋 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
 
Theorem0prjspnrel 42582* In the zero-dimensional projective space, all vectors are equivalent to the unit vector. (Contributed by Steven Nguyen, 7-Jun-2023.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝑆 𝑥 = (𝑙 · 𝑦))}    &   𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})    &    · = ( ·𝑠𝑊)    &   𝑆 = (Base‘𝐾)    &   𝑊 = (𝐾 freeLMod (0...0))    &    1 = ((𝐾 unitVec (0...0))‘0)       ((𝐾 ∈ DivRing ∧ 𝑋𝐵) → 𝑋 1 )
 
Theorem0prjspn 42583 A zero-dimensional projective space has only 1 point. (Contributed by Steven Nguyen, 9-Jun-2023.)
𝑊 = (𝐾 freeLMod (0...0))    &   𝐵 = ((Base‘𝑊) ∖ {(0g𝑊)})       (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵})
 
Syntaxcprjcrv 42584 Extend class notation with the projective curve function.
class ℙ𝕣𝕠𝕛Crv
 
Definitiondf-prjcrv 42585* Define the projective curve function. This takes a homogeneous polynomial and outputs the homogeneous coordinates where the polynomial evaluates to zero (the "zero set"). (In other words, scalar multiples are collapsed into the same projective point. See mhphf4 42555 and prjspvs 42565). (Contributed by SN, 23-Nov-2024.)
ℙ𝕣𝕠𝕛Crv = (𝑛 ∈ ℕ0, 𝑘 ∈ Field ↦ (𝑓 ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}}))
 
Theoremprjcrvfval 42586* Value of the projective curve function. (Contributed by SN, 23-Nov-2024.)
𝐻 = ((0...𝑁) mHomP 𝐾)    &   𝐸 = ((0...𝑁) eval 𝐾)    &   𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)    &    0 = (0g𝐾)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ Field)       (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
 
Theoremprjcrvval 42587* Value of the projective curve function. (Contributed by SN, 23-Nov-2024.)
𝐻 = ((0...𝑁) mHomP 𝐾)    &   𝐸 = ((0...𝑁) eval 𝐾)    &   𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)    &    0 = (0g𝐾)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ Field)    &   (𝜑𝐹 ran 𝐻)       (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }})
 
Theoremprjcrv0 42588 The "curve" (zero set) corresponding to the zero polynomial contains all coordinates. (Contributed by SN, 23-Nov-2024.)
𝑌 = ((0...𝑁) mPoly 𝐾)    &    0 = (0g𝑌)    &   𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ Field)       (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃)
 
21.30.8  Basic reductions for Fermat's Last Theorem
 
Theoremdffltz 42589* Fermat's Last Theorem (FLT) for nonzero integers is equivalent to the original scope of natural numbers. The backwards direction takes (𝑎𝑛) + (𝑏𝑛) = (𝑐𝑛), and adds the negative of any negative term to both sides, thus creating the corresponding equation with only positive integers. There are six combinations of negativity, so the proof is particularly long. (Contributed by Steven Nguyen, 27-Feb-2023.)
(∀𝑛 ∈ (ℤ‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥𝑛) + (𝑦𝑛)) ≠ (𝑧𝑛) ↔ ∀𝑛 ∈ (ℤ‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎𝑛) + (𝑏𝑛)) ≠ (𝑐𝑛))
 
Theoremfltmul 42590 A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (There does not seem to be a standard term for Fermat or Pythagorean triples extended to any 𝑁 ∈ ℕ0, so the label is more about the context in which this theorem is used). (Contributed by SN, 20-Aug-2024.)
(𝜑𝑆 ∈ ℂ)    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))       (𝜑 → (((𝑆 · 𝐴)↑𝑁) + ((𝑆 · 𝐵)↑𝑁)) = ((𝑆 · 𝐶)↑𝑁))
 
Theoremfltdiv 42591 A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (Contributed by SN, 20-Aug-2024.)
(𝜑𝑆 ∈ ℂ)    &   (𝜑𝑆 ≠ 0)    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))       (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁))
 
Theoremflt0 42592 A counterexample for FLT does not exist for 𝑁 = 0. (Contributed by SN, 20-Aug-2024.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))       (𝜑𝑁 ∈ ℕ)
 
Theoremfltdvdsabdvdsc 42593 Any factor of both 𝐴 and 𝐵 also divides 𝐶. This establishes the validity of fltabcoprmex 42594. (Contributed by SN, 21-Aug-2024.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))       (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶)
 
Theoremfltabcoprmex 42594 A counterexample to FLT implies a counterexample to FLT with 𝐴, 𝐵 (assigned to 𝐴 / (𝐴 gcd 𝐵) and 𝐵 / (𝐴 gcd 𝐵)) coprime (by divgcdcoprm0 16712). (Contributed by SN, 20-Aug-2024.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))       (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) + ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = ((𝐶 / (𝐴 gcd 𝐵))↑𝑁))
 
Theoremfltaccoprm 42595 A counterexample to FLT with 𝐴, 𝐵 coprime also has 𝐴, 𝐶 coprime. (Contributed by SN, 20-Aug-2024.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))    &   (𝜑 → (𝐴 gcd 𝐵) = 1)       (𝜑 → (𝐴 gcd 𝐶) = 1)
 
Theoremfltbccoprm 42596 A counterexample to FLT with 𝐴, 𝐵 coprime also has 𝐵, 𝐶 coprime. Proven from fltaccoprm 42595 using commutativity of addition. (Contributed by SN, 20-Aug-2024.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))    &   (𝜑 → (𝐴 gcd 𝐵) = 1)       (𝜑 → (𝐵 gcd 𝐶) = 1)
 
Theoremfltabcoprm 42597 A counterexample to FLT with 𝐴, 𝐶 coprime also has 𝐴, 𝐵 coprime. Converse of fltaccoprm 42595. (Contributed by SN, 22-Aug-2024.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑 → (𝐴 gcd 𝐶) = 1)    &   (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))       (𝜑 → (𝐴 gcd 𝐵) = 1)
 
Theoreminfdesc 42598* Infinite descent. The hypotheses say that 𝑆 is lower bounded, and that if 𝜓 holds for an integer in 𝑆, it holds for a smaller integer in 𝑆. By infinite descent, eventually we cannot go any smaller, therefore 𝜓 holds for no integer in 𝑆. (Contributed by SN, 20-Aug-2024.)
(𝑦 = 𝑥 → (𝜓𝜒))    &   (𝑦 = 𝑧 → (𝜓𝜃))    &   (𝜑𝑆 ⊆ (ℤ𝑀))    &   ((𝜑 ∧ (𝑥𝑆𝜒)) → ∃𝑧𝑆 (𝜃𝑧 < 𝑥))       (𝜑 → {𝑦𝑆𝜓} = ∅)
 
Theoremfltne 42599 If a counterexample to FLT exists, its addends are not equal. (Contributed by SN, 1-Jun-2023.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)    &   (𝜑𝐶 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ‘2))    &   (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))       (𝜑𝐴𝐵)
 
Theoremflt4lem 42600 Raising a number to the fourth power is equivalent to squaring it twice. (Contributed by SN, 21-Aug-2024.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48899
  Copyright terms: Public domain < Previous  Next >