HomeHome Metamath Proof Explorer
Theorem List (p. 426 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 42501-42600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremimbi13VD 42501 Join three logical equivalences to form equivalence of implications. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi13 42147 is imbi13VD 42501 without virtual deductions and was automatically derived from imbi13VD 42501.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   (𝜒𝜃)   )
3:: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   (𝜏𝜂)   )
4:2,3: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   ((𝜒𝜏) ↔ (𝜃𝜂))   )
5:1,4: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))   )
6:5: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂))))   )
7:6: (   (𝜑𝜓)   ▶   ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂)))))   )
qed:7: ((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂))))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))))
 
Theoremsbcim2gVD 42502 Distribution of class substitution over a left-nested implication. Similar to sbcimg 3768. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcim2g 42165 is sbcim2gVD 42502 without virtual deductions and was automatically derived from sbcim2gVD 42502.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   𝐴𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓𝜒))   )
3:1,2: (   𝐴𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 𝜒))   ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))   )
4:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   )
5:3,4: (   𝐴𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒))   )
6:5: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒)))   )
7:: (   𝐴𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   )
8:4,7: (   𝐴𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 [𝐴 / 𝑥](𝜓𝜒))   )
9:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 𝜒)) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)))   )
10:8,9: (   𝐴𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓 𝜒))   )
11:10: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓 𝜒)))   )
12:6,11: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒)))   )
qed:12: (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
 
TheoremsbcbiVD 42503 Implication form of sbcbii 3777. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcbi 42166 is sbcbiVD 42503 without virtual deductions and was automatically derived from sbcbiVD 42503.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   𝑥(𝜑𝜓)   )
3:1,2: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   [𝐴 / 𝑥](𝜑𝜓)   )
4:1,3: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)   )
5:4: (   𝐴𝐵   ▶   (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
qed:5: (𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 
TheoremtrsbcVD 42504* Formula-building inference rule for class substitution, substituting a class variable for the setvar variable of the transitivity predicate. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trsbc 42167 is trsbcVD 42504 without virtual deductions and was automatically derived from trsbcVD 42504.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦 𝑧𝑦)   )
3:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝑥 𝑦𝐴)   )
4:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑥 𝑧𝐴)   )
5:1,2,3,4: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑧𝑦 → ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))   )
6:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ([𝐴 / 𝑥]𝑧𝑦 ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥)))   )
7:5,6: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴 𝑧𝐴)))   )
8:: ((𝑧𝑦 → (𝑦𝐴 𝑧𝐴)) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
9:7,8: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
10:: ((𝑧𝑦 → (𝑦𝑥 𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
11:10: 𝑥((𝑧𝑦 → (𝑦𝑥 𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
12:1,11: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ [𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) 𝑧𝑥))   )
13:9,12: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝑧𝑦 𝑦𝑥) → 𝑧𝑥) ↔ ((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
14:13: (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥]((𝑧 𝑦𝑦𝑥) → 𝑧𝑥) ↔ ((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
15:14: (   𝐴𝐵   ▶   (∀𝑦[𝐴 / 𝑥]((𝑧 𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
16:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦((𝑧 𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧𝑦 𝑦𝑥) → 𝑧𝑥))   )
17:15,16: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦((𝑧 𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
18:17: (   𝐴𝐵   ▶   𝑧([𝐴 / 𝑥]𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
19:18: (   𝐴𝐵   ▶   (∀𝑧[𝐴 / 𝑥]𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦 𝑦𝐴) → 𝑧𝐴))   )
20:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧[𝐴 / 𝑥]𝑦((𝑧 𝑦𝑦𝑥) → 𝑧𝑥))   )
21:19,20: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦 𝑦𝐴) → 𝑧𝐴))   )
22:: (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦 𝑦𝐴) → 𝑧𝐴))
23:21,22: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ Tr 𝐴)   )
24:: (Tr 𝑥 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝑥) → 𝑧𝑥))
25:24: 𝑥(Tr 𝑥 ↔ ∀𝑧𝑦((𝑧𝑦 𝑦𝑥) → 𝑧𝑥))
26:1,25: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]Tr 𝑥 [𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥))   )
27:23,26: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)   )
qed:27: (𝐴𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))
 
TheoremtruniALTVD 42505* The union of a class of transitive sets is transitive. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. truniALT 42168 is truniALTVD 42505 without virtual deductions and was automatically derived from truniALTVD 42505.
1:: (   𝑥𝐴Tr 𝑥   ▶   𝑥𝐴 Tr 𝑥   )
2:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
3:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑧𝑦   )
4:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑦 𝐴   )
5:4: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑞(𝑦𝑞𝑞𝐴)   )
6:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   (𝑦𝑞𝑞𝐴)   )
7:6: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑦𝑞   )
8:6: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑞𝐴   )
9:1,8: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   [𝑞 / 𝑥]Tr 𝑥   )
10:8,9: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   Tr 𝑞   )
11:3,7,10: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑧𝑞   )
12:11,8: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑧 𝐴   )
13:12: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   ((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
14:13: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
15:14: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
16:5,15: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑧 𝐴   )
17:16: (   𝑥𝐴Tr 𝑥   ▶   ((𝑧𝑦 𝑦 𝐴) → 𝑧 𝐴)   )
18:17: (   𝑥𝐴Tr 𝑥    ▶   𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
19:18: (   𝑥𝐴Tr 𝑥   ▶   Tr 𝐴   )
qed:19: (∀𝑥𝐴Tr 𝑥 → Tr 𝐴)
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
 
Theoremee33VD 42506 Non-virtual deduction form of e33 42361. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ee33 42148 is ee33VD 42506 without virtual deductions and was automatically derived from ee33VD 42506.
h1:: (𝜑 → (𝜓 → (𝜒𝜃)))
h2:: (𝜑 → (𝜓 → (𝜒𝜏)))
h3:: (𝜃 → (𝜏𝜂))
4:1,3: (𝜑 → (𝜓 → (𝜒 → (𝜏𝜂))))
5:4: (𝜏 → (𝜑 → (𝜓 → (𝜒𝜂))))
6:2,5: (𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))))
7:6: (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒 𝜂)))))
8:7: (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))
qed:8: (𝜑 → (𝜓 → (𝜒𝜂)))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒𝜃)))    &   (𝜑 → (𝜓 → (𝜒𝜏)))    &   (𝜃 → (𝜏𝜂))       (𝜑 → (𝜓 → (𝜒𝜂)))
 
TheoremtrintALTVD 42507* The intersection of a class of transitive sets is transitive. Virtual deduction proof of trintALT 42508. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trintALT 42508 is trintALTVD 42507 without virtual deductions and was automatically derived from trintALTVD 42507.
1:: (   𝑥𝐴Tr 𝑥   ▶   𝑥𝐴Tr 𝑥   )
2:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
3:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧𝑦   )
4:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑦 𝐴   )
5:4: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴𝑦𝑞   )
6:5: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑦𝑞)   )
7:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑞𝐴   )
8:7,6: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑦𝑞   )
9:7,1: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   [𝑞 / 𝑥]Tr 𝑥   )
10:7,9: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   Tr 𝑞   )
11:10,3,8: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑧𝑞   )
12:11: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑧𝑞)   )
13:12: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞(𝑞𝐴𝑧𝑞)   )
14:13: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴𝑧𝑞   )
15:3,14: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧 𝐴   )
16:15: (   𝑥𝐴Tr 𝑥   ▶   ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
17:16: (   𝑥𝐴Tr 𝑥   ▶   𝑧𝑦((𝑧 𝑦𝑦 𝐴) → 𝑧 𝐴)   )
18:17: (   𝑥𝐴Tr 𝑥   ▶   Tr 𝐴   )
qed:18: (∀𝑥𝐴Tr 𝑥 → Tr 𝐴)
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
 
TheoremtrintALT 42508* The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. trintALT 42508 is an alternate proof of trint 5208. trintALT 42508 is trintALTVD 42507 without virtual deductions and was automatically derived from trintALTVD 42507 using the tools program translate..without..overwriting.cmd and the Metamath program "MM-PA> MINIMIZE_WITH *" command. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
 
Theoremundif3VD 42509 The first equality of Exercise 13 of [TakeutiZaring] p. 22. Virtual deduction proof of undif3 4225. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. undif3 4225 is undif3VD 42509 without virtual deductions and was automatically derived from undif3VD 42509.
1:: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴 𝑥 ∈ (𝐵𝐶)))
2:: (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥 𝐶))
3:2: ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥 𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4:1,3: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
5:: (   𝑥𝐴   ▶   𝑥𝐴   )
6:5: (   𝑥𝐴   ▶   (𝑥𝐴𝑥𝐵)   )
7:5: (   𝑥𝐴   ▶   𝑥𝐶𝑥𝐴)   )
8:6,7: (   𝑥𝐴   ▶   ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶𝑥𝐴))   )
9:8: (𝑥𝐴 → ((𝑥𝐴𝑥𝐵) ∧ ( ¬ 𝑥𝐶𝑥𝐴)))
10:: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   )
11:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐵   )
12:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   ¬ 𝑥𝐶    )
13:11: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 𝑥𝐵)   )
14:12: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥 𝐶𝑥𝐴)   )
15:13,14: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   ((𝑥 𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))   )
16:15: ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → ((𝑥𝐴 𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
17:9,16: ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
18:: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   )
19:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐴   )
20:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   ¬ 𝑥𝐶    )
21:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
22:21: ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
23:: (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴 𝑥𝐴)   )
24:23: (   (𝑥𝐴𝑥𝐴)   ▶   𝑥𝐴   )
25:24: (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
26:25: ((𝑥𝐴𝑥𝐴) → (𝑥𝐴 ∨ ( 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
27:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
28:27: ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
29:: (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐵 𝑥𝐴)   )
30:29: (   (𝑥𝐵𝑥𝐴)   ▶   𝑥𝐴   )
31:30: (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
32:31: ((𝑥𝐵𝑥𝐴) → (𝑥𝐴 ∨ ( 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
33:22,26: (((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
34:28,32: (((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
35:33,34: ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥 𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
36:: ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥 𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
37:36,35: (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
38:17,37: ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
39:: (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥 𝐴))
40:39: 𝑥 ∈ (𝐶𝐴) ↔ ¬ (𝑥𝐶 ¬ 𝑥𝐴))
41:: (¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴) ↔ (¬ 𝑥 𝐶𝑥𝐴))
42:40,41: 𝑥 ∈ (𝐶𝐴) ↔ (¬ 𝑥𝐶𝑥 𝐴))
43:: (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵 ))
44:43,42: ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴) ) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
45:: (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ( 𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)))
46:45,44: (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ( (𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
47:4,38: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ ((𝑥𝐴 𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
48:46,47: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴 𝐵) ∖ (𝐶𝐴)))
49:48: 𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ((𝐴𝐵) ∖ (𝐶𝐴)))
qed:49: (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶 𝐴))
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))
 
TheoremsbcssgVD 42510 Virtual deduction proof of sbcssg 4455. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcssg 4455 is sbcssgVD 42510 without virtual deductions and was automatically derived from sbcssgVD 42510.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
3:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦 𝐴 / 𝑥𝐷)   )
4:2,3: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶 [𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷 ))   )
5:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
6:4,5: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
7:6: (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
8:7: (   𝐴𝐵   ▶   (∀𝑦[𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷) )   )
9:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦 𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷))   )
10:8,9: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦 𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷) )   )
11:: (𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷))
110:11: 𝑥(𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦 𝐷))
12:1,110: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 [𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷))   )
13:10,12: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
14:: (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀ 𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))
15:13,14: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
qed:15: (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
 
TheoremcsbingVD 42511 Virtual deduction proof of csbin 4374. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbin 4374 is csbingVD 42511 without virtual deductions and was automatically derived from csbingVD 42511.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷) }
20:2: 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦 𝐷)}
30:1,20: (   𝐴𝐵   ▶   [𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
3:1,30: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
4:1: (   𝐴𝐵   ▶   𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶 𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
5:3,4: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
6:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
7:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦 𝐴 / 𝑥𝐷)   )
8:6,7: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶 [𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷 ))   )
9:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
10:9,8: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
11:10: (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
12:11: (   𝐴𝐵   ▶   {𝑦[𝐴 / 𝑥](𝑦𝐶 𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
13:5,12: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
14:: (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = { 𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}
15:13,14: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
qed:15: (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = ( 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
 
TheoremonfrALTlem5VD 42512* Virtual deduction proof of onfrALTlem5 42169. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem5 42169 is onfrALTlem5VD 42512 without virtual deductions and was automatically derived from onfrALTlem5VD 42512.
1:: 𝑎 ∈ V
2:1: (𝑎𝑥) ∈ V
3:2: ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎 𝑥) = ∅)
4:3: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ ¬ (𝑎𝑥) = ∅)
5:: ((𝑎𝑥) ≠ ∅ ↔ ¬ (𝑎𝑥 ) = ∅)
6:4,5: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) ≠ ∅)
7:2: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏]¬ 𝑏 = ∅)
8:: (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
9:8: 𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
10:2,9: ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎𝑥) / 𝑏]¬ 𝑏 = ∅)
11:7,10: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅)
12:6,11: ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ ( 𝑎𝑥) ≠ ∅)
13:2: ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥 ) ↔ (𝑎𝑥) ⊆ (𝑎𝑥))
14:12,13: (([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎 𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎 𝑥) ∧ (𝑎𝑥) ≠ ∅))
15:2: ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅))
16:15,14: ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
17:2: (𝑎𝑥) / 𝑏(𝑏𝑦) = ( (𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦)
18:2: (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥)
19:2: (𝑎𝑥) / 𝑏𝑦 = 𝑦
20:18,19: ((𝑎𝑥) / 𝑏𝑏(𝑎 𝑥) / 𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
21:17,20: (𝑎𝑥) / 𝑏(𝑏𝑦) = (( 𝑎𝑥) ∩ 𝑦)
22:2: ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏 ∅)
23:2: (𝑎𝑥) / 𝑏∅ = ∅
24:21,23: ((𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
25:22,24: ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
26:2: ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 (𝑎𝑥))
27:25,26: (([(𝑎𝑥) / 𝑏]𝑦𝑏[ (𝑎𝑥) / 𝑏](𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ (( 𝑎𝑥) ∩ 𝑦) = ∅))
28:2: ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏 𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅))
29:27,28: ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
30:29: 𝑦([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
31:30: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅))
32:: (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅ ))
33:31,32: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
34:2: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ ( 𝑏𝑦) = ∅))
35:33,34: ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦 ) = ∅)
36:: (∃𝑦𝑏(𝑏𝑦) = ∅ ↔ ∃𝑦 (𝑦𝑏 ∧ (𝑏𝑦) = ∅))
37:36: 𝑏(∃𝑦𝑏(𝑏𝑦) = ∅ ↔ 𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
38:2,37: ([(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
39:35,38: ([(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
40:16,39: (([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
41:2: ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅) ↔ ([(𝑎 𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏𝑦) = ∅))
qed:40,41: ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅) ↔ (((𝑎 𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥 )((𝑎𝑥) ∩ 𝑦) = ∅))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
 
TheoremonfrALTlem4VD 42513* Virtual deduction proof of onfrALTlem4 42170. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem4 42170 is onfrALTlem4VD 42513 without virtual deductions and was automatically derived from onfrALTlem4VD 42513.
1:: 𝑦 ∈ V
2:1: ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ 𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥∅)
3:1: 𝑦 / 𝑥(𝑎𝑥) = (𝑦 / 𝑥 𝑎𝑦 / 𝑥𝑥)
4:1: 𝑦 / 𝑥𝑎 = 𝑎
5:1: 𝑦 / 𝑥𝑥 = 𝑦
6:4,5: (𝑦 / 𝑥𝑎𝑦 / 𝑥𝑥) = ( 𝑎𝑦)
7:3,6: 𝑦 / 𝑥(𝑎𝑥) = (𝑎𝑦)
8:1: 𝑦 / 𝑥∅ = ∅
9:7,8: (𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥 ∅ ↔ (𝑎𝑦) = ∅)
10:2,9: ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ (𝑎 𝑦) = ∅)
11:1: ([𝑦 / 𝑥]𝑥𝑎𝑦𝑎)
12:11,10: (([𝑦 / 𝑥]𝑥𝑎[𝑦 / 𝑥]( 𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
13:1: ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ([𝑦 / 𝑥]𝑥𝑎[𝑦 / 𝑥](𝑎𝑥) = ∅))
qed:13,12: ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
 
TheoremonfrALTlem3VD 42514* Virtual deduction proof of onfrALTlem3 42171. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem3 42171 is onfrALTlem3VD 42514 without virtual deductions and was automatically derived from onfrALTlem3VD 42514.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
2:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   )
3:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥𝑎   )
4:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 On   )
5:3,4: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥 ∈ On   )
6:5: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Ord 𝑥   )
7:6: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶    E We 𝑥   )
8:: (𝑎𝑥) ⊆ 𝑥
9:7,8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶    E We (𝑎𝑥)   )
10:9: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶    E Fr (𝑎𝑥)   )
11:10: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅)   )
12:: 𝑥 ∈ V
13:12,8: (𝑎𝑥) ∈ V
14:13,11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   [(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅)   )
15:: ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅) ↔ (((𝑎 𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)( (𝑎𝑥) ∩ 𝑦) = ∅))
16:14,15: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ ( 𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)   )
17:: (𝑎𝑥) ⊆ (𝑎𝑥)
18:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ¬ (𝑎𝑥) = ∅   )
19:18: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑎𝑥) ≠ ∅   )
20:17,19: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎 𝑥) ≠ ∅)   )
qed:16,20: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦 ) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅   )
 
Theoremsimplbi2comtVD 42515 Virtual deduction proof of simplbi2comt 502. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. simplbi2comt 502 is simplbi2comtVD 42515 without virtual deductions and was automatically derived from simplbi2comtVD 42515.
1:: (   (𝜑 ↔ (𝜓𝜒))   ▶   (𝜑 ↔ ( 𝜓𝜒))   )
2:1: (   (𝜑 ↔ (𝜓𝜒))   ▶   ((𝜓𝜒 ) → 𝜑)   )
3:2: (   (𝜑 ↔ (𝜓𝜒))   ▶   (𝜓 → (𝜒 𝜑))   )
4:3: (   (𝜑 ↔ (𝜓𝜒))   ▶   (𝜒 → (𝜓 𝜑))   )
qed:4: ((𝜑 ↔ (𝜓𝜒)) → (𝜒 → (𝜓 𝜑)))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ↔ (𝜓𝜒)) → (𝜒 → (𝜓𝜑)))
 
TheoremonfrALTlem2VD 42516* Virtual deduction proof of onfrALTlem2 42173. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem2 42173 is onfrALTlem2VD 42516 without virtual deductions and was automatically derived from onfrALTlem2VD 42516.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   )
2:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑦)   )
3:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑎   )
4:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
5:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   )
6:5: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥𝑎   )
7:4: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 On   )
8:6,7: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥 ∈ On   )
9:8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Ord 𝑥   )
10:9: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Tr 𝑥   )
11:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦 ∈ (𝑎𝑥)   )
12:11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦𝑥   )
13:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑦   )
14:10,12,13: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑥   )
15:3,14: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑥)   )
16:13,15: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)   )
17:16: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
18:17: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
19:18: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦)   )
20:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   )
21:20: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   ((𝑎𝑥) ∩ 𝑦) = ∅   )
22:19,21: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎𝑦) = ∅   )
23:20: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)   )
24:23: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦𝑎   )
25:22,24: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
26:25: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
27:26: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥 ) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
28:27: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥 ) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
29:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦 ) = ∅   )
30:29: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅)   )
31:28,30: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
qed:31: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
 
TheoremonfrALTlem1VD 42517* Virtual deduction proof of onfrALTlem1 42175. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem1 42175 is onfrALTlem1VD 42517 without virtual deductions and was automatically derived from onfrALTlem1VD 42517.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   )
2:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅)   )
3:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅)    )
4:: ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅ ) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
5:4: 𝑦([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
6:5: (∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))
7:3,6: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
8:: (∃𝑦𝑎(𝑎𝑦) = ∅ ↔ ∃𝑦( 𝑦𝑎 ∧ (𝑎𝑦) = ∅))
qed:7,8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
 
TheoremonfrALTVD 42518 Virtual deduction proof of onfrALT 42176. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALT 42176 is onfrALTVD 42518 without virtual deductions and was automatically derived from onfrALTVD 42518.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
2:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
3:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    (¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
4:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    ((𝑎𝑥) = ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
5:: ((𝑎𝑥) = ∅ ∨ ¬ (𝑎𝑥) = ∅)
6:5,4,3: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    𝑦𝑎(𝑎𝑦) = ∅   )
7:6: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑥𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
8:7: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑥(𝑥 𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
9:8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (∃𝑥𝑥 𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
10:: (𝑎 ≠ ∅ ↔ ∃𝑥𝑥𝑎)
11:9,10: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
12:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 On ∧ 𝑎 ≠ ∅)   )
13:12: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎    )
14:13,11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑦 𝑎(𝑎𝑦) = ∅   )
15:14: ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
16:15: 𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 𝑎(𝑎𝑦) = ∅)
qed:16: E Fr On
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
E Fr On
 
Theoremcsbeq2gVD 42519 Virtual deduction proof of csbeq2 3838. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbeq2 3838 is csbeq2gVD 42519 without virtual deductions and was automatically derived from csbeq2gVD 42519.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   (∀𝑥𝐵 = 𝐶[𝐴 / 𝑥] 𝐵 = 𝐶)   )
3:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)   )
4:2,3: (   𝐴𝑉   ▶   (∀𝑥𝐵 = 𝐶𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐶)   )
qed:4: (𝐴𝑉 → (∀𝑥𝐵 = 𝐶𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
 
TheoremcsbsngVD 42520 Virtual deduction proof of csbsng 4645. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbsng 4645 is csbsngVD 42520 without virtual deductions and was automatically derived from csbsngVD 42520.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝑦 = 𝐴 / 𝑥𝐵)   )
6:5: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
7:6: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
8:1: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
9:7,8: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
10:: {𝐵} = {𝑦𝑦 = 𝐵}
11:10: 𝑥{𝐵} = {𝑦𝑦 = 𝐵}
12:1,11: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
13:9,12: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
14:: {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
15:13,14: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵}   )
qed:15: (𝐴𝑉𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵})
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
 
TheoremcsbxpgVD 42521 Virtual deduction proof of csbxp 5687. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbxp 5687 is csbxpgVD 42521 without virtual deductions and was automatically derived from csbxpgVD 42521.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝐵 𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤 = 𝑤   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵𝑤𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝐵𝑤 𝐴 / 𝑥𝐵)   )
6:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐶 𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶)   )
7:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
8:7: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐶)   )
9:6,8: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
10:5,9: (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑤𝐵 [𝐴 / 𝑥]𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶))   )
11:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑤𝐵 𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶))   )
12:10,11: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑤𝐵 𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))   )
13:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑧 = ⟨𝑤   ,    𝑦⟩ ↔ 𝑧 = ⟨𝑤, 𝑦⟩)   )
14:12,13: (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦 ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
15:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦 [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)))   )
16:14,15: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
17:16: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥](𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
18:17: (   𝐴𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
19:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))   )
20:18,19: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
21:20: (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
22:21: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
23:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]𝑦 (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))   )
24:22,23: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
25:24: (   𝐴𝑉   ▶   𝑧([𝐴 / 𝑥]𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
26:25: (   𝐴𝑉   ▶   {𝑧[𝐴 / 𝑥]𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}    )
27:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧[𝐴 / 𝑥] 𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}   )
28:26,27: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}    )
29:: {⟨𝑤   ,   𝑦⟩ ∣ (𝑤𝐵𝑦𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
30:: (𝐵 × 𝐶) = {⟨𝑤   ,   𝑦⟩ ∣ (𝑤𝐵 𝑦𝐶)}
31:29,30: (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤 , 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
32:31: 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
33:1,32: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵 𝑦𝐶))}   )
34:28,33: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶))}   )
35:: {⟨𝑤   ,   𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}
36:: (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = { 𝑤, 𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)}
37:35,36: (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶))}
38:34,37: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶)   )
qed:38: (𝐴𝑉𝐴 / 𝑥(𝐵 × 𝐶) = ( 𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))
 
TheoremcsbresgVD 42522 Virtual deduction proof of csbres 5897. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbres 5897 is csbresgVD 42522 without virtual deductions and was automatically derived from csbresgVD 42522.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   𝐴 / 𝑥V = V   )
3:2: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V)   )
4:1: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V)   )
5:3,4: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V)   )
6:5: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
7:1: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V))   )
8:6,7: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
9:: (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
10:9: 𝑥(𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
11:1,10: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V))   )
12:8,11: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = ( 𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
13:: (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = ( 𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
14:12,13: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = ( 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)   )
qed:14: (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = ( 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
TheoremcsbrngVD 42523 Virtual deduction proof of csbrn 6111. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbrn 6111 is csbrngVD 42523 without virtual deductions and was automatically derived from csbrngVD 42523.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤   ,   𝑦 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤   ,   𝑦⟩ = 𝑤, 𝑦   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤   ,   𝑦 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤   ,   𝑦 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
6:5: (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
7:6: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
8:1: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵)   )
9:7,8: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑤    ,   𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
10:9: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑤 𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
11:10: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
12:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
13:11,12: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
14:: ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤   ,   𝑦⟩ ∈ 𝐵}
15:14: 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤   ,   𝑦 𝐵}
16:1,15: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
17:13,16: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = {𝑦 𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
18:: ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤    ,   𝑦⟩ ∈ 𝐴 / 𝑥𝐵}
19:17,18: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵   )
qed:19: (𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)
 
Theoremcsbima12gALTVD 42524 Virtual deduction proof of csbima12 5990. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbima12 5990 is csbima12gALTVD 42524 without virtual deductions and was automatically derived from csbima12gALTVD 42524.
1:: (   𝐴𝐶   ▶   𝐴𝐶   )
2:1: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
3:2: (   𝐴𝐶   ▶    ran 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
4:1: (   𝐴𝐶   ▶    𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵)   )
5:3,4: (   𝐴𝐶   ▶    𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
6:: (𝐹𝐵) = ran (𝐹𝐵)
7:6: 𝑥(𝐹𝐵) = ran (𝐹𝐵)
8:1,7: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵)   )
9:5,8: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
10:: (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
11:9,10: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
qed:11: (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
 
TheoremcsbunigVD 42525 Virtual deduction proof of csbuni 4871. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbuni 4871 is csbunigVD 42525 without virtual deductions and was automatically derived from csbunigVD 42525.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑧𝑦𝑧 𝑦)   )
3:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐵𝑦 𝐴 / 𝑥𝐵)   )
4:2,3: (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑧𝑦 [𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
5:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦 𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵))   )
6:4,5: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦 𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
7:6: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥](𝑧 𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
8:7: (   𝐴𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
9:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵))   )
10:8,9: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
11:10: (   𝐴𝑉   ▶   𝑧([𝐴 / 𝑥]𝑦( 𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
12:11: (   𝐴𝑉   ▶   {𝑧[𝐴 / 𝑥]𝑦( 𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}   )
13:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧 𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)}    )
14:12,13: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧 𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}   )
15:: 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
16:15: 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦 𝐵)}
17:1,16: (   𝐴𝑉   ▶   [𝐴 / 𝑥] 𝐵 = {𝑧 𝑦(𝑧𝑦𝑦𝐵)}   )
18:1,17: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}   )
19:14,18: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = {𝑧 𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}   )
20:: 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}
21:19,20: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵   )
qed:21: (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
 
Theoremcsbfv12gALTVD 42526 Virtual deduction proof of csbfv12 6826. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbfv12 6826 is csbfv12gALTVD 42526 without virtual deductions and was automatically derived from csbfv12gALTVD 42526.
1:: (   𝐴𝐶   ▶   𝐴𝐶   )
2:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦} = { 𝑦}   )
3:1: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵 }) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵})   )
4:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵}   )
5:4: (   𝐴𝐶   ▶   (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
6:3,5: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵 }) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
7:1: (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦})   )
8:6,2: (   𝐴𝐶   ▶   (𝐴 / 𝑥(𝐹 “ { 𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
9:7,8: (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})    )
10:9: (   𝐴𝐶   ▶   𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
11:10: (   𝐴𝐶   ▶   {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
12:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}   )
13:11,12: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦 }}   )
14:13: (   𝐴𝐶   ▶    𝐴 / 𝑥{𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 {𝐴 / 𝑥𝐵}) = {𝑦}}   )
15:1: (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
16:14,15: (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
17:: (𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
18:17: 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵 }) = {𝑦}}
19:1,18: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
20:16,19: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
21:: (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}
22:20,21: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
qed:22: (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
 
Theoremcon5VD 42527 Virtual deduction proof of con5 42149. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con5 42149 is con5VD 42527 without virtual deductions and was automatically derived from con5VD 42527.
1:: (   (𝜑 ↔ ¬ 𝜓)   ▶   (𝜑 ↔ ¬ 𝜓)   )
2:1: (   (𝜑 ↔ ¬ 𝜓)   ▶   𝜓𝜑)   )
3:2: (   (𝜑 ↔ ¬ 𝜓)   ▶   𝜑 → ¬ ¬ 𝜓 )   )
4:: (𝜓 ↔ ¬ ¬ 𝜓)
5:3,4: (   (𝜑 ↔ ¬ 𝜓)   ▶   𝜑𝜓)   )
qed:5: ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))
 
TheoremrelopabVD 42528 Virtual deduction proof of relopab 5736. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab 5736 is relopabVD 42528 without virtual deductions and was automatically derived from relopabVD 42528.
1:: (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   )
2:1: (   𝑦 = 𝑣   ▶   𝑥   ,   𝑦⟩ = ⟨𝑥   ,   𝑣    )
3:: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
4:3: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑣⟩ = ⟨ 𝑢, 𝑣   )
5:2,4: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑦⟩ = ⟨ 𝑢, 𝑣   )
6:5: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   )
7:6: (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,    𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   )
8:7: (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
9:8: (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
90:: (𝑣 = 𝑦𝑦 = 𝑣)
91:90: (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣)
92:: 𝑣𝑣 = 𝑦
10:91,92: 𝑣𝑦 = 𝑣
11:9,10: 𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
12:11: (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
13:: (∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢 , 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
14:12,13: (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
15:14: (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥   ,   𝑦 ⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
150:: (𝑢 = 𝑥𝑥 = 𝑢)
151:150: (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢)
152:: 𝑢𝑢 = 𝑥
16:151,152: 𝑢𝑥 = 𝑢
17:15,16: 𝑢(𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
18:17: (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
19:18: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑦𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
20:: (∃𝑦𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
21:19,20: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
22:21: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑥 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
23:: (∃𝑥𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
24:22,23: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
25:24: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
26:: 𝑥 ∈ V
27:: 𝑦 ∈ V
28:26,27: (𝑥 ∈ V ∧ 𝑦 ∈ V)
29:28: (𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ (𝑧 = ⟨𝑥   ,   𝑦 ⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
30:29: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑦(𝑧 = 𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
31:30: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑥 𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
32:31: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} = { 𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
320:25,32: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
33:: 𝑢 ∈ V
34:: 𝑣 ∈ V
35:33,34: (𝑢 ∈ V ∧ 𝑣 ∈ V)
36:35: (𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ (𝑧 = ⟨𝑢   ,   𝑣 ⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
37:36: (∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑣(𝑧 = 𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
38:37: (∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑢 𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
39:38: {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩} = { 𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
40:320,39: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
41:: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) }
42:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) }
43:40,41,42: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
44:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = (V × V)
45:43,44: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ (V × V)
46:28: (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
47:46: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥   ,   𝑦 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
48:45,47: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ (V × V)
qed:48: Rel {⟨𝑥   ,   𝑦⟩ ∣ 𝜑}
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theorem19.41rgVD 42529 Virtual deduction proof of 19.41rg 42177. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 42177 is 19.41rgVD 42529 without virtual deductions and was automatically derived from 19.41rgVD 42529. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (𝜓 → (𝜑 → (𝜑𝜓)))
2:1: ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → ( 𝜑𝜓))))
3:2: 𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
4:3: (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 𝑥(𝜑 → (𝜑𝜓))))
5:: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
6:4,5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))   )
7:: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥𝜓   )
8:6,7: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥(𝜑 → (𝜑𝜓))   )
9:8: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))   )
10:9: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
11:5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ∀ 𝑥𝜓)   )
12:10,11: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ( 𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
13:12: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓)))   )
14:13: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   ((∃𝑥 𝜑𝜓) → ∃𝑥(𝜑𝜓))   )
qed:14: (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 𝜓) → ∃𝑥(𝜑𝜓)))
(∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))
 
Theorem2pm13.193VD 42530 Virtual deduction proof of 2pm13.193 42179. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 2pm13.193 42179 is 2pm13.193VD 42530 without virtual deductions and was automatically derived from 2pm13.193VD 42530. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
2:1: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
3:2: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑥 = 𝑢   )
4:1: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
5:3,4: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
6:5: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
7:6: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
8:2: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑦 = 𝑣   )
9:7,8: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
10:9: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝜑𝑦 = 𝑣)   )
11:10: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝜑   )
12:2,11: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
13:12: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
14:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
15:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
16:15: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑦 = 𝑣   )
17:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝜑    )
18:16,17: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ( 𝜑𝑦 = 𝑣)   )
19:18: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
20:15: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑥 = 𝑢   )
21:19: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
22:20,21: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
23:22: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
24:23: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
25:15,24: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
26:25: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
qed:13,26: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
(((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
 
TheoremhbimpgVD 42531 Virtual deduction proof of hbimpg 42181. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg 42181 is hbimpgVD 42531 without virtual deductions and was automatically derived from hbimpgVD 42531. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 𝑥𝜓))   )
2:1: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥(𝜑 → ∀𝑥𝜑)   )
3:: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   ¬ 𝜑   )
4:2: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥𝜑 → ∀𝑥¬ 𝜑)   )
5:4: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝜑 → ∀𝑥¬ 𝜑)   )
6:3,5: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   𝑥¬ 𝜑   )
7:: 𝜑 → (𝜑𝜓))
8:7: (∀𝑥¬ 𝜑 → ∀𝑥(𝜑𝜓))
9:6,8: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   𝑥(𝜑𝜓)   )
10:9: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝜑 → ∀𝑥(𝜑𝜓))   )
11:: (𝜓 → (𝜑𝜓))
12:11: (∀𝑥𝜓 → ∀𝑥(𝜑𝜓))
13:1: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
14:13: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥𝜓)   )
15:14,12: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥(𝜑𝜓))   )
16:10,15: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((¬ 𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
17:: ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
18:16,17: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
19:: (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑥( 𝜑 → ∀𝑥𝜑))
20:: (∀𝑥(𝜓 → ∀𝑥𝜓) → ∀𝑥𝑥( 𝜓 → ∀𝑥𝜓))
21:19,20: ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥(∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 𝑥𝜓)))
22:21,18: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
qed:22: ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓)))
((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓)))
 
TheoremhbalgVD 42532 Virtual deduction proof of hbalg 42182. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 42182 is hbalgVD 42532 without virtual deductions and was automatically derived from hbalgVD 42532. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(𝜑 → ∀𝑥𝜑)   )
2:1: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑦𝑥𝜑)   )
3:: (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
4:2,3: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑥𝑦𝜑)   )
5:: (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑦( 𝜑 → ∀𝑥𝜑))
6:5,4: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∀ 𝑦𝜑 → ∀𝑥𝑦𝜑)   )
qed:6: (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦 𝜑 → ∀𝑥𝑦𝜑))
(∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
 
TheoremhbexgVD 42533 Virtual deduction proof of hbexg 42183. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 42183 is hbexgVD 42533 without virtual deductions and was automatically derived from hbexgVD 42533. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(𝜑 → ∀𝑥𝜑)   )
2:1: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥(𝜑 → ∀𝑥𝜑)   )
3:2: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (𝜑 → ∀𝑥𝜑)   )
4:3: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝜑 → ∀𝑥¬ 𝜑)   )
5:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦 𝑥(𝜑 → ∀𝑥𝜑))
6:: (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑦𝑥(𝜑 → ∀𝑥𝜑))
7:5: (∀𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ 𝑦𝑦𝑥(𝜑 → ∀𝑥𝜑))
8:5,6,7: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑥𝑦(𝜑 → ∀𝑥𝜑))
9:8,4: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥𝜑 → ∀𝑥¬ 𝜑)   )
10:9: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦𝜑 → ∀𝑥¬ 𝜑)   )
11:10: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝜑 → ∀𝑥¬ 𝜑)   )
12:11: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
13:12: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀ 𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
14:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥 𝑥𝑦(𝜑 → ∀𝑥𝜑))
15:13,14: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
16:15: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
17:16: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶    𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
18:: (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑)
19:17,18: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
20:18: (∀𝑥𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑)
21:19,20: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥𝑦𝜑)   )
22:8,21: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
23:14,22: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
qed:23: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
(∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))
 
Theoremax6e2eqVD 42534* The following User's Proof is a Virtual Deduction proof (see wvd1 42196) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2eq 42184 is ax6e2eqVD 42534 without virtual deductions and was automatically derived from ax6e2eqVD 42534. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑥 = 𝑦   )
2:: (   𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
3:1: (   𝑥𝑥 = 𝑦   ▶   𝑥 = 𝑦   )
4:2,3: (   𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   𝑦 = 𝑢   )
5:2,4: (   𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   (𝑥 = 𝑢𝑦 = 𝑢)   )
6:5: (   𝑥𝑥 = 𝑦   ▶   (𝑥 = 𝑢 → (𝑥 = 𝑢 𝑦 = 𝑢))   )
7:6: (∀𝑥𝑥 = 𝑦 → (𝑥 = 𝑢 → (𝑥 = 𝑢𝑦 = 𝑢)))
8:7: (∀𝑥𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → ( 𝑥 = 𝑢𝑦 = 𝑢)))
9:: (∀𝑥𝑥 = 𝑦 ↔ ∀𝑥𝑥𝑥 = 𝑦)
10:8,9: (∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢 𝑦 = 𝑢)))
11:1,10: (   𝑥𝑥 = 𝑦   ▶   𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢𝑦 = 𝑢))   )
12:11: (   𝑥𝑥 = 𝑦   ▶   (∃𝑥𝑥 = 𝑢 → ∃𝑥 (𝑥 = 𝑢𝑦 = 𝑢))   )
13:: 𝑥𝑥 = 𝑢
14:13,12: (   𝑥𝑥 = 𝑦   ▶   𝑥(𝑥 = 𝑢𝑦 = 𝑢 )   )
140:14: (∀𝑥𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑢) )
141:140: (∀𝑥𝑥 = 𝑦 → ∀𝑥𝑥(𝑥 = 𝑢𝑦 = 𝑢))
15:1,141: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑥(𝑥 = 𝑢 𝑦 = 𝑢)   )
16:1,15: (   𝑥𝑥 = 𝑦   ▶   𝑦𝑥(𝑥 = 𝑢 𝑦 = 𝑢)   )
17:16: (   𝑥𝑥 = 𝑦   ▶   𝑦𝑥(𝑥 = 𝑢 𝑦 = 𝑢)   )
18:17: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑢)   )
19:: (   𝑢 = 𝑣   ▶   𝑢 = 𝑣   )
20:: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   (𝑥 = 𝑢𝑦 = 𝑢)   )
21:20: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   𝑦 = 𝑢    )
22:19,21: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   𝑦 = 𝑣    )
23:20: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   𝑥 = 𝑢    )
24:22,23: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
25:24: (   𝑢 = 𝑣   ▶   ((𝑥 = 𝑢𝑦 = 𝑢) → ( 𝑥 = 𝑢𝑦 = 𝑣))   )
26:25: (   𝑢 = 𝑣   ▶   𝑦((𝑥 = 𝑢𝑦 = 𝑢) → (𝑥 = 𝑢𝑦 = 𝑣))   )
27:26: (   𝑢 = 𝑣   ▶   (∃𝑦(𝑥 = 𝑢𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢𝑦 = 𝑣))   )
28:27: (   𝑢 = 𝑣   ▶   𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢𝑦 = 𝑣))   )
29:28: (   𝑢 = 𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑢) → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))   )
30:29: (𝑢 = 𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑢 ) → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
31:18,30: (   𝑥𝑥 = 𝑦   ▶   (𝑢 = 𝑣 → ∃𝑥𝑦 (𝑥 = 𝑢𝑦 = 𝑣))   )
qed:31: (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦( 𝑥 = 𝑢𝑦 = 𝑣)))
(∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
 
Theoremax6e2ndVD 42535* The following User's Proof is a Virtual Deduction proof (see wvd1 42196) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2nd 42185 is ax6e2ndVD 42535 without virtual deductions and was automatically derived from ax6e2ndVD 42535. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: 𝑦𝑦 = 𝑣
2:: 𝑢 ∈ V
3:1,2: (𝑢 ∈ V ∧ ∃𝑦𝑦 = 𝑣)
4:3: 𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣)
5:: (𝑢 ∈ V ↔ ∃𝑥𝑥 = 𝑢)
6:5: ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥𝑥 = 𝑢𝑦 = 𝑣))
7:6: (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦 (∃𝑥𝑥 = 𝑢𝑦 = 𝑣))
8:4,7: 𝑦(∃𝑥𝑥 = 𝑢𝑦 = 𝑣)
9:: (𝑧 = 𝑣 → ∀𝑥𝑧 = 𝑣)
10:: (𝑦 = 𝑣 → ∀𝑧𝑦 = 𝑣)
11:: (   𝑧 = 𝑦   ▶   𝑧 = 𝑦   )
12:11: (   𝑧 = 𝑦   ▶   (𝑧 = 𝑣𝑦 = 𝑣)   )
120:11: (𝑧 = 𝑦 → (𝑧 = 𝑣𝑦 = 𝑣))
13:9,10,120: (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣))
14:: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑥𝑥 = 𝑦   )
15:14,13: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣)   )
16:15: (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣))
17:16: (∀𝑥¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣))
18:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦 )
19:17,18: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀ 𝑥𝑦 = 𝑣))
20:14,19: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑥(𝑦 = 𝑣 𝑥𝑦 = 𝑣)   )
21:20: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ((∃𝑥𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
22:21: (¬ ∀𝑥𝑥 = 𝑦 → ((∃𝑥𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
23:22: (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
24:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦 )
25:23,24: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
26:14,25: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑦((∃𝑥𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
27:26: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (∃𝑦(∃𝑥𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
28:8,27: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣)   )
29:28: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)   )
qed:29: (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣))
(¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theoremax6e2ndeqVD 42536* The following User's Proof is a Virtual Deduction proof (see wvd1 42196) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2eq 42184 is ax6e2ndeqVD 42536 without virtual deductions and was automatically derived from ax6e2ndeqVD 42536. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑢𝑣   ▶   𝑢𝑣   )
2:: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   ( 𝑥 = 𝑢𝑦 = 𝑣)   )
3:2: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑥 = 𝑢   )
4:1,3: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑥 𝑣   )
5:2: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑦 = 𝑣   )
6:4,5: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑥 𝑦   )
7:: (∀𝑥𝑥 = 𝑦𝑥 = 𝑦)
8:7: 𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
9:: 𝑥 = 𝑦𝑥𝑦)
10:8,9: (𝑥𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
11:6,10: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶    ¬ ∀𝑥𝑥 = 𝑦   )
12:11: (   𝑢𝑣   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
13:12: (   𝑢𝑣   ▶   𝑥((𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
14:13: (   𝑢𝑣   ▶   (∃𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥¬ ∀𝑥𝑥 = 𝑦)   )
15:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦 )
19:15: (∃𝑥¬ ∀𝑥𝑥 = 𝑦 ↔ ¬ ∀𝑥𝑥 = 𝑦)
20:14,19: (   𝑢𝑣   ▶   (∃𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
21:20: (   𝑢𝑣   ▶   𝑦(∃𝑥(𝑥 = 𝑢 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
22:21: (   𝑢𝑣   ▶   (∃𝑦𝑥(𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦)   )
23:: (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ↔ ∃ 𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))
24:22,23: (   𝑢𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦)   )
25:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦 )
26:25: (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∃𝑦𝑦¬ 𝑥𝑥 = 𝑦)
260:: (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦𝑦¬ 𝑥𝑥 = 𝑦)
27:260: (∃𝑦𝑦¬ ∀𝑥𝑥 = 𝑦 ↔ ∀𝑦¬ 𝑥𝑥 = 𝑦)
270:26,27: (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥 𝑥 = 𝑦)
28:: (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦 )
29:270,28: (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦 )
30:24,29: (   𝑢𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
31:30: (   𝑢𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣))   )
32:31: (𝑢𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣)))
33:: (   𝑢 = 𝑣   ▶   𝑢 = 𝑣   )
34:33: (   𝑢 = 𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → 𝑢 = 𝑣)   )
35:34: (   𝑢 = 𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣))   )
36:35: (𝑢 = 𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣)))
37:: (𝑢 = 𝑣𝑢𝑣)
38:32,36,37: (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ( ¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣))
39:: (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦 (𝑥 = 𝑢𝑦 = 𝑣)))
40:: (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣))
41:40: (¬ ∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
42:: (∀𝑥𝑥 = 𝑦 ∨ ¬ ∀𝑥𝑥 = 𝑦)
43:39,41,42: (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣 ))
44:40,43: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) → ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣))
qed:38,44: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣))
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theorem2sb5ndVD 42537* The following User's Proof is a Virtual Deduction proof (see wvd1 42196) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. 2sb5nd 42187 is 2sb5ndVD 42537 without virtual deductions and was automatically derived from 2sb5ndVD 42537. (Contributed by Alan Sare, 30-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
2:1: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
3:: ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
4:3: [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
5:4: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥] 𝑦[𝑣 / 𝑦]𝜑)
6:: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑥𝑥 = 𝑦   )
7:: (∀𝑦𝑦 = 𝑥 → ∀𝑥𝑥 = 𝑦)
8:7: (¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑦𝑦 = 𝑥)
9:6,8: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑦𝑦 = 𝑥   )
10:9: ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀ 𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
11:5,10: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
12:11: (¬ ∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
13:: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
14:: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑥 = 𝑦   )
15:14: (   𝑥𝑥 = 𝑦   ▶   (∀𝑥[𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
16:13,15: (   𝑥𝑥 = 𝑦   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦 ]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
17:16: (∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦] 𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
19:12,17: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
20:19: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
21:2,20: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
22:21: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
23:13: (∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
24:22,23: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
240:24: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
241:: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
242:241,240: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
243:: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ( [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))) ↔ ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))))
25:242,243: (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ([ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
26:: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣))
qed:25,26: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
 
Theorem2uasbanhVD 42538* The following User's Proof is a Virtual Deduction proof (see wvd1 42196) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. 2uasbanh 42188 is 2uasbanhVD 42538 without virtual deductions and was automatically derived from 2uasbanhVD 42538. (Contributed by Alan Sare, 31-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
h1:: (𝜒 ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
100:1: (𝜒 → (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
2:100: (   𝜒   ▶   (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))   )
3:2: (   𝜒   ▶   𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
4:3: (   𝜒   ▶   𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣 )   )
5:4: (   𝜒   ▶   (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣)    )
6:5: (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))   )
7:3,6: (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
8:2: (   𝜒   ▶   𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)   )
9:5: (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))   )
10:8,9: (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜓   )
101:: ([𝑣 / 𝑦](𝜑𝜓) ↔ ([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
102:101: ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑𝜓) ↔ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
103:: ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦 ]𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
104:102,103: ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
11:7,10,104: (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦](𝜑 𝜓)   )
110:5: (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 𝜓) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)))   )
12:11,110: (   𝜒   ▶   𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓))   )
120:12: (𝜒 → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣 ) ∧ (𝜑𝜓)))
13:1,120: ((∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)) → 𝑥𝑦((𝑥 = 𝑢 𝑦 = 𝑣) ∧ (𝜑𝜓)))
14:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓))   )
15:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
16:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   (𝜑𝜓)   )
17:16: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   𝜑   )
18:15,17: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
19:18: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 )) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
20:19: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑 𝜓)) → ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
21:20: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
22:16: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   𝜓   )
23:15,22: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)   )
24:23: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 )) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
25:24: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑 𝜓)) → ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
26:25: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
27:21,26: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) → (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ 𝑥𝑦( (𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
qed:13,27: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ 𝑥𝑦( (𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
(𝜒 ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))       (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
 
Theoreme2ebindVD 42539 The following User's Proof is a Virtual Deduction proof (see wvd1 42196) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. e2ebind 42190 is e2ebindVD 42539 without virtual deductions and was automatically derived from e2ebindVD 42539.
1:: (𝜑𝜑)
2:1: (∀𝑦𝑦 = 𝑥 → (𝜑𝜑))
3:2: (∀𝑦𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑 ))
4:: (   𝑦𝑦 = 𝑥   ▶   𝑦𝑦 = 𝑥   )
5:3,4: (   𝑦𝑦 = 𝑥   ▶   (∃𝑦𝜑 ↔ ∃𝑥 𝜑)   )
6:: (∀𝑦𝑦 = 𝑥 → ∀𝑦𝑦𝑦 = 𝑥)
7:5,6: (   𝑦𝑦 = 𝑥   ▶   𝑦(∃𝑦𝜑 𝑥𝜑)   )
8:7: (   𝑦𝑦 = 𝑥   ▶   (∃𝑦𝑦𝜑 𝑦𝑥𝜑)   )
9:: (∃𝑦𝑥𝜑 ↔ ∃𝑥𝑦𝜑)
10:8,9: (   𝑦𝑦 = 𝑥   ▶   (∃𝑦𝑦𝜑 𝑥𝑦𝜑)   )
11:: (∃𝑦𝜑 → ∀𝑦𝑦𝜑)
12:11: (∃𝑦𝑦𝜑 ↔ ∃𝑦𝜑)
13:10,12: (   𝑦𝑦 = 𝑥   ▶   (∃𝑥𝑦𝜑 𝑦𝜑)   )
14:13: (∀𝑦𝑦 = 𝑥 → (∃𝑥𝑦𝜑 ↔ ∃ 𝑦𝜑))
15:: (∀𝑦𝑦 = 𝑥 ↔ ∀𝑥𝑥 = 𝑦)
qed:14,15: (∀𝑥𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃ 𝑦𝜑))
(Contributed by Alan Sare, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃𝑦𝜑))
 
20.36.8  Virtual Deduction transcriptions of textbook proofs
 
Theoremsb5ALTVD 42540* The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 20 Excercise 3.a., which is sb5 2269, found in the "Answers to Starred Exercises" on page 457 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sb5ALT 42152 is sb5ALTVD 42540 without virtual deductions and was automatically derived from sb5ALTVD 42540.
1:: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥]𝜑   )
2:: [𝑦 / 𝑥]𝑥 = 𝑦
3:1,2: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥](𝑥 = 𝑦 𝜑)   )
4:3: (   [𝑦 / 𝑥]𝜑   ▶   𝑥(𝑥 = 𝑦𝜑 )   )
5:4: ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑) )
6:: (   𝑥(𝑥 = 𝑦𝜑)   ▶   𝑥(𝑥 = 𝑦𝜑)   )
7:: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   (𝑥 = 𝑦𝜑)   )
8:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝜑   )
9:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝑥 = 𝑦   )
10:8,9: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   [𝑦 / 𝑥]𝜑   )
101:: ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
11:101,10: (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑 )
12:5,11: (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑 )) ∧ (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
qed:12: ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑) )
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremvk15.4jVD 42541 The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 15 Excercise 4.f. found in the "Answers to Starred Exercises" on page 442 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. vk15.4j 42155 is vk15.4jVD 42541 without virtual deductions and was automatically derived from vk15.4jVD 42541. Step numbers greater than 25 are additional steps necessary for the sequent calculus proof not contained in the Fitch-style proof. Otherwise, step i of the User's Proof corresponds to step i of the Fitch-style proof.
h1:: ¬ (∃𝑥¬ 𝜑 ∧ ∃𝑥(𝜓 ¬ 𝜒))
h2:: (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏 ))
h3:: ¬ ∀𝑥(𝜏𝜑)
4:: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥¬ 𝜃   )
5:4: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥𝜃   )
6:3: 𝑥(𝜏 ∧ ¬ 𝜑)
7:: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜏 ∧ ¬ 𝜑)   )
8:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝜏   )
9:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ 𝜑   )
10:5: (   ¬ ∃𝑥¬ 𝜃   ▶   𝜃   )
11:10,8: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜃𝜏)   )
12:11: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥(𝜃𝜏)   )
13:12: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ¬ ∃𝑥(𝜃𝜏)   )
14:2,13: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ∀𝑥𝜒   )
140:: (∃𝑥¬ 𝜃 → ∀𝑥𝑥¬ 𝜃 )
141:140: (¬ ∃𝑥¬ 𝜃 → ∀𝑥¬ ∃𝑥 ¬ 𝜃)
142:: (∀𝑥𝜒 → ∀𝑥𝑥𝜒)
143:142: (¬ ∀𝑥𝜒 → ∀𝑥¬ ∀𝑥𝜒 )
144:6,14,141,143: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜒    )
15:1: (¬ ∃𝑥¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
16:9: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥¬ 𝜑   )
161:: (∃𝑥¬ 𝜑 → ∀𝑥𝑥¬ 𝜑 )
162:6,16,141,161: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜑    )
17:162: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ¬ ∃𝑥 ¬ 𝜑   )
18:15,17: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥( 𝜓 ∧ ¬ 𝜒)   )
19:18: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥(𝜓 𝜒)   )
20:144: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜒    )
21:: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜒   )
22:19: (   ¬ ∃𝑥¬ 𝜃   ▶   (𝜓𝜒 )   )
23:21,22: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜓   )
24:23: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶    𝑥¬ 𝜓   )
240:: (∃𝑥¬ 𝜓 → ∀𝑥𝑥¬ 𝜓 )
241:20,24,141,240: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜓    )
25:241: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜓    )
qed:25: (¬ ∃𝑥¬ 𝜃 → ¬ ∀𝑥𝜓)
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))    &   (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))    &    ¬ ∀𝑥(𝜏𝜑)       (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)
 
TheoremnotnotrALTVD 42542 The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Theorem 5 of Section 14 of [Margaris] p. 59 (which is notnotr 130). The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. notnotrALT 42156 is notnotrALTVD 42542 without virtual deductions and was automatically derived from notnotrALTVD 42542. Step i of the User's Proof corresponds to step i of the Fitch-style proof.
1:: (   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜑   )
2:: (¬ ¬ 𝜑 → (¬ 𝜑 → ¬ ¬ ¬ 𝜑))
3:1: (   ¬ ¬ 𝜑   ▶   𝜑 → ¬ ¬ ¬ 𝜑)   )
4:: ((¬ 𝜑 → ¬ ¬ ¬ 𝜑) → (¬ ¬ 𝜑 𝜑))
5:3: (   ¬ ¬ 𝜑   ▶   (¬ ¬ 𝜑𝜑)   )
6:5,1: (   ¬ ¬ 𝜑   ▶   𝜑   )
qed:6: (¬ ¬ 𝜑𝜑)
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ¬ 𝜑𝜑)
 
Theoremcon3ALTVD 42543 The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Theorem 7 of Section 14 of [Margaris] p. 60 (which is con3 153). The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con3ALT2 42157 is con3ALTVD 42543 without virtual deductions and was automatically derived from con3ALTVD 42543. Step i of the User's Proof corresponds to step i of the Fitch-style proof.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜑   )
3:: (¬ ¬ 𝜑𝜑)
4:2: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜑   )
5:1,4: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜓   )
6:: (𝜓 → ¬ ¬ 𝜓)
7:6,5: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜓   )
8:7: (   (𝜑𝜓)   ▶   (¬ ¬ 𝜑 → ¬ ¬ 𝜓 )   )
9:: ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 ¬ 𝜑))
10:8: (   (𝜑𝜓)   ▶   𝜓 → ¬ 𝜑)   )
qed:10: ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
 
20.36.9  Theorems proved using conjunction-form Virtual Deduction
 
TheoremelpwgdedVD 42544 Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived from elpwg 4537. In form of VD deduction with 𝜑 and 𝜓 as variable virtual hypothesis collections based on Mario Carneiro's metavariable concept. elpwgded 42191 is elpwgdedVD 42544 using conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝐴 ∈ V   )    &   (   𝜓   ▶   𝐴𝐵   )       (   (   𝜑   ,   𝜓   )   ▶   𝐴 ∈ 𝒫 𝐵   )
 
Theoremsspwimp 42545 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. For the biconditional, see sspwb 5366. The proof sspwimp 42545, using conventional notation, was translated from virtual deduction form, sspwimpVD 42546, using a translation program. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremsspwimpVD 42546 The following User's Proof is a Virtual Deduction proof (see wvd1 42196) using conjunction-form virtual hypothesis collections. It was completed manually, but has the potential to be completed automatically by a tools program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimp 42545 is sspwimpVD 42546 without virtual deductions and was derived from sspwimpVD 42546. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   .............. 𝑥 ∈ 𝒫 𝐴    ▶   𝑥 ∈ 𝒫 𝐴   )
3:2: (   .............. 𝑥 ∈ 𝒫 𝐴    ▶   𝑥𝐴   )
4:3,1: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
5:: 𝑥 ∈ V
6:4,5: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵    )
7:6: (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)    )
8:7: (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 𝒫 𝐵)   )
9:8: (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
qed:9: (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
Theoremsspwimpcf 42547 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpcf 42547, using conventional notation, was translated from its virtual deduction form, sspwimpcfVD 42548, using a translation program. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremsspwimpcfVD 42548 The following User's Proof is a Virtual Deduction proof (see wvd1 42196) using conjunction-form virtual hypothesis collections. It was completed automatically by a tools program which would invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimpcf 42547 is sspwimpcfVD 42548 without virtual deductions and was derived from sspwimpcfVD 42548. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   ........... 𝑥 ∈ 𝒫 𝐴    ▶   𝑥 ∈ 𝒫 𝐴   )
3:2: (   ........... 𝑥 ∈ 𝒫 𝐴    ▶   𝑥𝐴   )
4:3,1: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
5:: 𝑥 ∈ V
6:4,5: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵    )
7:6: (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)    )
8:7: (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 𝒫 𝐵)   )
9:8: (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
qed:9: (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremsuctrALTcf 42549 The sucessor of a transitive class is transitive. suctrALTcf 42549, using conventional notation, was translated from virtual deduction form, suctrALTcfVD 42550, using a translation program. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴 → Tr suc 𝐴)
 
TheoremsuctrALTcfVD 42550 The following User's Proof is a Virtual Deduction proof (see wvd1 42196) using conjunction-form virtual hypothesis collections. The conjunction-form version of completeusersproof.cmd. It allows the User to avoid superflous virtual hypotheses. This proof was completed automatically by a tools program which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf 42549 is suctrALTcfVD 42550 without virtual deductions and was derived automatically from suctrALTcfVD 42550. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   Tr 𝐴   ▶   Tr 𝐴   )
2:: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑧𝑦𝑦 ∈ suc 𝐴)   )
3:2: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑧𝑦   )
4:: (   ................................... ....... 𝑦𝐴   ▶   𝑦𝐴   )
5:1,3,4: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧𝐴   )
6:: 𝐴 ⊆ suc 𝐴
7:5,6: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
8:7: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   (𝑦𝐴𝑧 ∈ suc 𝐴)   )
9:: (   ................................... ...... 𝑦 = 𝐴   ▶   𝑦 = 𝐴   )
10:3,9: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧𝐴   )
11:10,6: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
12:11: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦 = 𝐴𝑧 ∈ suc 𝐴)   )
13:2: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑦 ∈ suc 𝐴   )
14:13: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦𝐴𝑦 = 𝐴)   )
15:8,12,14: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   𝑧 ∈ suc 𝐴   )
16:15: (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
17:16: (   Tr 𝐴   ▶   𝑧𝑦((𝑧 𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
18:17: (   Tr 𝐴   ▶   Tr suc 𝐴   )
qed:18: (Tr 𝐴 → Tr suc 𝐴)
(Tr 𝐴 → Tr suc 𝐴)
 
20.36.10  Theorems with a VD proof in conventional notation derived from a VD proof
 
TheoremsuctrALT3 42551 The successor of a transitive class is transitive. suctrALT3 42551 is the completed proof in conventional notation of the Virtual Deduction proof https://us.metamath.org/other/completeusersproof/suctralt3vd.html 42551. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 42196 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 19 used jaoded 42193). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 24 used dftr2 5194) . (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴 → Tr suc 𝐴)
 
TheoremsspwimpALT 42552 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpALT 42552 is the completed proof in conventional notation of the Virtual Deduction proof https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html 42552. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 42196 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 9 used elpwgded 42191). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 5 used elpwi 4543). (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremunisnALT 42553 A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 42553 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30). mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 42553. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 42553, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V        {𝐴} = 𝐴
 
20.36.11  Theorems with a proof in conventional notation derived from a VD proof

Theorems with a proof in conventional notation automatically derived by completeusersproof.c from a Virtual Deduction User's Proof.

 
TheoremnotnotrALT2 42554 Converse of double negation. Theorem *2.14 of [WhiteheadRussell] p. 102. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ¬ 𝜑𝜑)
 
TheoremsspwimpALT2 42555 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
Theoreme2ebindALT 42556 Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in e2ebindVD 42539. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃𝑦𝜑))
 
Theoremax6e2ndALT 42557* If at least two sets exist (dtru 5360) , then the same is true expressed in an alternate form similar to the form of ax6e 2384. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndVD 42535. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theoremax6e2ndeqALT 42558* "At least two sets exist" expressed in the form of dtru 5360 is logically equivalent to the same expressed in a form similar to ax6e 2384 if dtru 5360 is false implies 𝑢 = 𝑣. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndeqVD 42536. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theorem2sb5ndALT 42559* Equivalence for double substitution 2sb5 2273 without distinct 𝑥, 𝑦 requirement. 2sb5nd 42187 is derived from 2sb5ndVD 42537. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in 2sb5ndVD 42537. (Contributed by Alan Sare, 19-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
 
TheoremchordthmALT 42560* The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 25995 twice to show that PA · PB and PC · PD both equal BQ 2 PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. Proven by David Moews on 28-Feb-2017 as chordthm 25996. https://us.metamath.org/other/completeusersproof/chordthmaltvd.html 25996 is a Virtual Deduction User's Proof transcription of chordthm 25996. That VD User's Proof was input into completeusersproof, automatically generating this chordthmALT 42560 Metamath proof. (Contributed by Alan Sare, 19-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝑃 ∈ ℂ)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)    &   (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)    &   (𝜑𝑄 ∈ ℂ)    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))       (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
 
Theoremisosctrlem1ALT 42561 Lemma for isosctr 25980. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 25980. As it is verified by the Metamath program, isosctrlem1ALT 42561 verifies https://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html 42561. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)
 
Theoremiunconnlem2 42562* The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconlem2vd.html. As it is verified by the Metamath program, iunconnlem2 42562 verifies https://us.metamath.org/other/completeusersproof/iunconlem2vd.html 42562. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   ((𝜑𝑘𝐴) → 𝐵𝑋)    &   ((𝜑𝑘𝐴) → 𝑃𝐵)    &   ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)       (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
 
TheoremiunconnALT 42563* The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconaltvd.html. As it is verified by the Metamath program, iunconnALT 42563 verifies https://us.metamath.org/other/completeusersproof/iunconaltvd.html 42563. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   ((𝜑𝑘𝐴) → 𝐵𝑋)    &   ((𝜑𝑘𝐴) → 𝑃𝐵)    &   ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)       (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
 
Theoremsineq0ALT 42564 A complex number whose sine is zero is an integer multiple of π. The Virtual Deduction form of the proof is https://us.metamath.org/other/completeusersproof/sineq0altvd.html. The Metamath form of the proof is sineq0ALT 42564. The Virtual Deduction proof is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 25689. The Virtual Deduction proof is verified by automatically transforming it into the Metamath form of the proof using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/sineq0altro.html 25689 is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
 
20.37  Mathbox for Glauco Siliprandi
 
20.37.1  Miscellanea
 
Theoremevth2f 42565* A version of evth2 24132 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐹    &   𝑦𝐹    &   𝑥𝑋    &   𝑦𝑋    &   𝑋 = 𝐽    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ Comp)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝑋 ≠ ∅)       (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
 
Theoremelunif 42566* A version of eluni 4843 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴    &   𝑥𝐵       (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
 
Theoremrzalf 42567 A version of rzal 4440 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥 𝐴 = ∅       (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
 
Theoremfvelrnbf 42568 A version of fvelrnb 6839 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝐹       (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
 
Theoremrfcnpre1 42569 If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐵    &   𝑥𝐹    &   𝑥𝜑    &   𝐾 = (topGen‘ran (,))    &   𝑋 = 𝐽    &   𝐴 = {𝑥𝑋𝐵 < (𝐹𝑥)}    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))       (𝜑𝐴𝐽)
 
Theoremubelsupr 42570* If U belongs to A and U is an upper bound, then U is the sup of A. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑈 = sup(𝐴, ℝ, < ))
 
Theoremfsumcnf 42571* A finite sum of functions to complex numbers from a common topological space is continuous, without disjoint var constraint x ph. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝐾 = (TopOpen‘ℂfld)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
 
Theoremmulltgt0 42572 The product of a negative and a positive number is negative. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
(((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 · 𝐵) < 0)
 
Theoremrspcegf 42573 A version of rspcev 3562 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝜓    &   𝑥𝐴    &   𝑥𝐵    &   (𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
 
Theoremrabexgf 42574 A version of rabexg 5256 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴       (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
 
Theoremfcnre 42575 A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝐾 = (topGen‘ran (,))    &   𝑇 = 𝐽    &   𝐶 = (𝐽 Cn 𝐾)    &   (𝜑𝐹𝐶)       (𝜑𝐹:𝑇⟶ℝ)
 
Theoremsumsnd 42576* A sum of a singleton is the term. The deduction version of sumsn 15467. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
(𝜑𝑘𝐵)    &   𝑘𝜑    &   ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)    &   (𝜑𝑀𝑉)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
 
Theoremevthf 42577* A version of evth 24131 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐹    &   𝑦𝐹    &   𝑥𝑋    &   𝑦𝑋    &   𝑥𝜑    &   𝑦𝜑    &   𝑋 = 𝐽    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ Comp)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝑋 ≠ ∅)       (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
 
Theoremcnfex 42578 The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
 
Theoremfnchoice 42579* For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
(𝐴 ∈ Fin → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
 
Theoremrefsumcn 42580* A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn 24042 for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝜑    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
 
Theoremrfcnpre2 42581 If 𝐹 is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real 𝐵, is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐵    &   𝑥𝐹    &   𝑥𝜑    &   𝐾 = (topGen‘ran (,))    &   𝑋 = 𝐽    &   𝐴 = {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))       (𝜑𝐴𝐽)
 
Theoremcncmpmax 42582* When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑇 = 𝐽    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ Comp)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝑇 ≠ ∅)       (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
 
Theoremrfcnpre3 42583* If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑡𝐹    &   𝐾 = (topGen‘ran (,))    &   𝑇 = 𝐽    &   𝐴 = {𝑡𝑇𝐵 ≤ (𝐹𝑡)}    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))       (𝜑𝐴 ∈ (Clsd‘𝐽))
 
Theoremrfcnpre4 42584* If F is a continuous function with respect to the standard topology, then the preimage A of the values less than or equal to a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑡𝐹    &   𝐾 = (topGen‘ran (,))    &   𝑇 = 𝐽    &   𝐴 = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))       (𝜑𝐴 ∈ (Clsd‘𝐽))
 
Theoremsumpair 42585* Sum of two distinct complex values. The class expression for 𝐴 and 𝐵 normally contain free variable 𝑘 to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
(𝜑𝑘𝐷)    &   (𝜑𝑘𝐸)    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐸 ∈ ℂ)    &   (𝜑𝐴𝐵)    &   ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)    &   ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)       (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
 
Theoremrfcnnnub 42586* Given a real continuous function 𝐹 defined on a compact topological space, there is always a positive integer that is a strict upper bound of its range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑡𝐹    &   𝑡𝜑    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ Comp)    &   𝑇 = 𝐽    &   (𝜑𝑇 ≠ ∅)    &   𝐶 = (𝐽 Cn 𝐾)    &   (𝜑𝐹𝐶)       (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
 
Theoremrefsum2cnlem1 42587* This is the core Lemma for refsum2cn 42588: the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴    &   𝑥𝐹    &   𝑥𝐺    &   𝑥𝜑    &   𝐴 = (𝑘 ∈ {1, 2} ↦ if(𝑘 = 1, 𝐹, 𝐺))    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝐺 ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
 
Theoremrefsum2cn 42588* The sum of two continuus real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐹    &   𝑥𝐺    &   𝑥𝜑    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝐺 ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝑥𝑋 ↦ ((𝐹𝑥) + (𝐺𝑥))) ∈ (𝐽 Cn 𝐾))
 
Theoremelunnel2 42589 A member of a union that is not a member of the second class, is a member of the first class. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝐴 ∈ (𝐵𝐶) ∧ ¬ 𝐴𝐶) → 𝐴𝐵)
 
Theoremadantlllr 42590 Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)       (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
 
Theorem3adantlr3 42591 Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)       (((𝜑 ∧ (𝜓𝜒𝜂)) ∧ 𝜃) → 𝜏)
 
Theoremnnxrd 42592 A natural number is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℝ*)
 
Theorem3adantll2 42593 Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)       ((((𝜑𝜂𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
 
Theorem3adantll3 42594 Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)       ((((𝜑𝜓𝜂) ∧ 𝜒) ∧ 𝜃) → 𝜏)
 
Theoremssnel 42595 If not element of a set, then not element of a subset. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝐴𝐵 ∧ ¬ 𝐶𝐵) → ¬ 𝐶𝐴)
 
Theoremelabrexg 42596* Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝑥𝐴𝐵𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
 
Theoremsncldre 42597 A singleton is closed w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝐴 ∈ ℝ → {𝐴} ∈ (Clsd‘(topGen‘ran (,))))
 
Theoremn0p 42598 A polynomial with a nonzero coefficient is not the zero polynomial. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) → 𝑃 ≠ 0𝑝)
 
Theorempm2.65ni 42599 Inference rule for proof by contradiction. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝜑𝜓)    &   𝜑 → ¬ 𝜓)       𝜑
 
Theorempwssfi 42600 Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝐴𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >