HomeHome Metamath Proof Explorer
Theorem List (p. 426 of 499)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30893)
  Hilbert Space Explorer  Hilbert Space Explorer
(30894-32416)
  Users' Mathboxes  Users' Mathboxes
(32417-49836)
 

Theorem List for Metamath Proof Explorer - 42501-42600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmulgt0con1dlem 42501 Lemma for mulgt0con1d 42502. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (0 < 𝐴 → 0 < 𝐵))    &   (𝜑 → (𝐴 = 0 → 𝐵 = 0))       (𝜑 → (𝐵 < 0 → 𝐴 < 0))
 
Theoremmulgt0con1d 42502 Counterpart to mulgt0con2d 42503, though not a lemma. This is the first use of ax-pre-mulgt0 11080. One direction of mulgt0b2d 42510. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐵)    &   (𝜑 → (𝐴 · 𝐵) < 0)       (𝜑𝐴 < 0)
 
Theoremmulgt0con2d 42503 Lemma for mulgt0b1d 42504 and contrapositive of mulgt0 11187. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑 → (𝐴 · 𝐵) < 0)       (𝜑𝐵 < 0)
 
Theoremmulgt0b1d 42504 Biconditional, deductive form of mulgt0 11187. The second factor is positive iff the product is. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)       (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵)))
 
Theoremsn-ltmul2d 42505 ltmul2d 12973 without ax-mulcom 11067. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → 0 < 𝐶)       (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵))
 
Theoremsn-ltmulgt11d 42506 ltmulgt11d 12966 without ax-mulcom 11067. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐵)       (𝜑 → (1 < 𝐴𝐵 < (𝐵 · 𝐴)))
 
Theoremsn-0lt1 42507 0lt1 11636 without ax-mulcom 11067. (Contributed by SN, 13-Feb-2024.)
0 < 1
 
Theoremsn-ltp1 42508 ltp1 11958 without ax-mulcom 11067. (Contributed by SN, 13-Feb-2024.)
(𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
 
Theoremsn-recgt0d 42509 The reciprocal of a positive real is positive. (Contributed by SN, 26-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)       (𝜑 → 0 < (1 / 𝐴))
 
Theoremmulgt0b2d 42510 Biconditional, deductive form of mulgt0 11187. The first factor is positive iff the product is. (Contributed by SN, 24-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐵)       (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 · 𝐵)))
 
Theoremsn-mulgt1d 42511 mulgt1d 12055 without ax-mulcom 11067. (Contributed by SN, 26-Jun-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)    &   (𝜑 → 1 < 𝐵)       (𝜑 → 1 < (𝐴 · 𝐵))
 
Theoremreneg1lt0 42512 Negative one is a negative number. (Contributed by SN, 1-Jun-2024.)
(0 − 1) < 0
 
Theoremsn-reclt0d 42513 The reciprocal of a negative real is negative. (Contributed by SN, 26-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 0)       (𝜑 → (1 / 𝐴) < 0)
 
Theoremmulltgt0d 42514 Negative times positive is negative. (Contributed by SN, 26-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 0)    &   (𝜑 → 0 < 𝐵)       (𝜑 → (𝐴 · 𝐵) < 0)
 
Theoremmullt0b1d 42515 When the first term is negative, the second term is positive iff the product is negative. (Contributed by SN, 26-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 0)       (𝜑 → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0))
 
Theoremmullt0b2d 42516 When the second term is negative, the first term is positive iff the product is negative. (Contributed by SN, 26-Nov-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐵 < 0)       (𝜑 → (0 < 𝐴 ↔ (𝐴 · 𝐵) < 0))
 
Theoremsn-mullt0d 42517 The product of two negative numbers is positive. (Contributed by SN, 1-Dec-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 0)    &   (𝜑𝐵 < 0)       (𝜑 → 0 < (𝐴 · 𝐵))
 
Theoremsn-msqgt0d 42518 A nonzero square is positive. (Contributed by SN, 1-Dec-2025.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → 0 < (𝐴 · 𝐴))
 
Theoremsn-inelr 42519 inelr 12112 without ax-mulcom 11067. (Contributed by SN, 1-Jun-2024.)
¬ i ∈ ℝ
 
Theoremsn-itrere 42520 i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024.)
(𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))
 
Theoremsn-retire 42521 Commuted version of sn-itrere 42520. (Contributed by SN, 27-Jun-2024.)
(𝑅 ∈ ℝ → ((𝑅 · i) ∈ ℝ ↔ 𝑅 = 0))
 
Theoremcnreeu 42522 The reals in the expression given by cnre 11106 uniquely define a complex number. (Contributed by SN, 27-Jun-2024.)
(𝜑𝑟 ∈ ℝ)    &   (𝜑𝑠 ∈ ℝ)    &   (𝜑𝑡 ∈ ℝ)    &   (𝜑𝑢 ∈ ℝ)       (𝜑 → ((𝑟 + (i · 𝑠)) = (𝑡 + (i · 𝑢)) ↔ (𝑟 = 𝑡𝑠 = 𝑢)))
 
Theoremsn-sup2 42523* sup2 12075 with exactly the same proof except for using sn-ltp1 42508 instead of ltp1 11958, saving ax-mulcom 11067. (Contributed by SN, 26-Jun-2024.)
((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Theoremsn-sup3d 42524* sup3 12076 without ax-mulcom 11067, proven trivially from sn-sup2 42523. (Contributed by SN, 29-Jun-2025.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Theoremsn-suprcld 42525* suprcld 12082 without ax-mulcom 11067, proven trivially from sn-sup3d 42524. (Contributed by SN, 29-Jun-2025.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)       (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
 
Theoremsn-suprubd 42526* suprubd 12081 without ax-mulcom 11067, proven trivially from sn-suprcld 42525. (Contributed by SN, 29-Jun-2025.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐴 ≠ ∅)    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)    &   (𝜑𝐵𝐴)       (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
 
21.30.6  Structures
 
Theoremsn-base0 42527 Avoid axioms in base0 17122 by using the discouraged df-base 17118. This kind of axiom save is probably not worth it. (Contributed by SN, 16-Sep-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
∅ = (Base‘∅)
 
Theoremnelsubginvcld 42528 The inverse of a non-subgroup-member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋 ∈ (𝐵𝑆))    &   𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)       (𝜑 → (𝑁𝑋) ∈ (𝐵𝑆))
 
Theoremnelsubgcld 42529 A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋 ∈ (𝐵𝑆))    &   𝐵 = (Base‘𝐺)    &   (𝜑𝑌𝑆)    &    + = (+g𝐺)       (𝜑 → (𝑋 + 𝑌) ∈ (𝐵𝑆))
 
Theoremnelsubgsubcld 42530 A non-subgroup-member minus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋 ∈ (𝐵𝑆))    &   𝐵 = (Base‘𝐺)    &   (𝜑𝑌𝑆)    &    = (-g𝐺)       (𝜑 → (𝑋 𝑌) ∈ (𝐵𝑆))
 
Theoremrnasclg 42531 The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.)
𝐴 = (algSc‘𝑊)    &    1 = (1r𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) → ran 𝐴 = (𝑁‘{ 1 }))
 
Theoremfrlmfielbas 42532 The vectors of a finite free module are the functions from 𝐼 to 𝑁. (Contributed by SN, 31-Aug-2023.)
𝐹 = (𝑅 freeLMod 𝐼)    &   𝑁 = (Base‘𝑅)    &   𝐵 = (Base‘𝐹)       ((𝑅𝑉𝐼 ∈ Fin) → (𝑋𝐵𝑋:𝐼𝑁))
 
Theoremfrlmfzwrd 42533 A vector of a module with indices from 0 to 𝑁 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.)
𝑊 = (𝐾 freeLMod (0...𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       (𝑋𝐵𝑋 ∈ Word 𝑆)
 
Theoremfrlmfzowrd 42534 A vector of a module with indices from 0 to 𝑁 − 1 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.)
𝑊 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       (𝑋𝐵𝑋 ∈ Word 𝑆)
 
Theoremfrlmfzolen 42535 The dimension of a vector of a module with indices from 0 to 𝑁 − 1. (Contributed by SN, 1-Sep-2023.)
𝑊 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       ((𝑁 ∈ ℕ0𝑋𝐵) → (♯‘𝑋) = 𝑁)
 
Theoremfrlmfzowrdb 42536 The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.)
𝑊 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)))
 
Theoremfrlmfzoccat 42537 The concatenation of two vectors of dimension 𝑁 and 𝑀 forms a vector of dimension 𝑁 + 𝑀. (Contributed by SN, 31-Aug-2023.)
𝑊 = (𝐾 freeLMod (0..^𝐿))    &   𝑋 = (𝐾 freeLMod (0..^𝑀))    &   𝑌 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝐶 = (Base‘𝑋)    &   𝐷 = (Base‘𝑌)    &   (𝜑𝐾𝑍)    &   (𝜑 → (𝑀 + 𝑁) = 𝐿)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑈𝐶)    &   (𝜑𝑉𝐷)       (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵)
 
Theoremfrlmvscadiccat 42538 Scalar multiplication distributes over concatenation. (Contributed by SN, 6-Sep-2023.)
𝑊 = (𝐾 freeLMod (0..^𝐿))    &   𝑋 = (𝐾 freeLMod (0..^𝑀))    &   𝑌 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝐶 = (Base‘𝑋)    &   𝐷 = (Base‘𝑌)    &   (𝜑𝐾𝑍)    &   (𝜑 → (𝑀 + 𝑁) = 𝐿)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑈𝐶)    &   (𝜑𝑉𝐷)    &   𝑂 = ( ·𝑠𝑊)    &    = ( ·𝑠𝑋)    &    · = ( ·𝑠𝑌)    &   𝑆 = (Base‘𝐾)    &   (𝜑𝐴𝑆)       (𝜑 → (𝐴𝑂(𝑈 ++ 𝑉)) = ((𝐴 𝑈) ++ (𝐴 · 𝑉)))
 
Theoremgrpasscan2d 42539 An associative cancellation law for groups. (Contributed by SN, 29-Jan-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑋 + (𝑁𝑌)) + 𝑌) = 𝑋)
 
Theoremgrpcominv1 42540 If two elements commute, then they commute with each other's inverses (case of the first element commuting with the inverse of the second element). (Contributed by SN, 29-Jan-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))       (𝜑 → (𝑋 + (𝑁𝑌)) = ((𝑁𝑌) + 𝑋))
 
Theoremgrpcominv2 42541 If two elements commute, then they commute with each other's inverses (case of the second element commuting with the inverse of the first element). (Contributed by SN, 1-Feb-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝑁 = (invg𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))       (𝜑 → (𝑌 + (𝑁𝑋)) = ((𝑁𝑋) + 𝑌))
 
Theoremfinsubmsubg 42542 A submonoid of a finite group is a subgroup. This does not extend to infinite groups, as the submonoid 0 of the group (ℤ, + ) shows. Note also that the union of a submonoid and its inverses need not be a submonoid, as the submonoid (ℕ0 ∖ {1}) of the group (ℤ, + ) shows: 3 is in that submonoid, -2 is the inverse of 2, but 1 is not in their union. Or simply, the subgroup generated by (ℕ0 ∖ {1}) is , not (ℤ ∖ {1, -1}). (Contributed by SN, 31-Jan-2025.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubMnd‘𝐺))    &   (𝜑𝐵 ∈ Fin)       (𝜑𝑆 ∈ (SubGrp‘𝐺))
 
Theoremopprmndb 42543 A class is a monoid if and only if its opposite (ring) is a monoid. (Contributed by SN, 20-Jun-2025.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd)
 
Theoremopprgrpb 42544 A class is a group if and only if its opposite (ring) is a group. (Contributed by SN, 20-Jun-2025.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp)
 
Theoremopprablb 42545 A class is an Abelian group if and only if its opposite (ring) is an Abelian group. (Contributed by SN, 20-Jun-2025.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Abel ↔ 𝑂 ∈ Abel)
 
Theoremimacrhmcl 42546 The image of a commutative ring homomorphism is a commutative ring. (Contributed by SN, 10-Jan-2025.)
𝐶 = (𝑁s (𝐹𝑆))    &   (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))    &   (𝜑𝑀 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑀))       (𝜑𝐶 ∈ CRing)
 
Theoremrimrcl1 42547 Reverse closure of a ring isomorphism. (Contributed by SN, 19-Feb-2025.)
(𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑅 ∈ Ring)
 
Theoremrimrcl2 42548 Reverse closure of a ring isomorphism. (Contributed by SN, 19-Feb-2025.)
(𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑆 ∈ Ring)
 
Theoremrimcnv 42549 The converse of a ring isomorphism is a ring isomorphism. (Contributed by SN, 10-Jan-2025.)
(𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑆 RingIso 𝑅))
 
Theoremrimco 42550 The composition of ring isomorphisms is a ring isomorphism. (Contributed by SN, 17-Jan-2025.)
((𝐹 ∈ (𝑆 RingIso 𝑇) ∧ 𝐺 ∈ (𝑅 RingIso 𝑆)) → (𝐹𝐺) ∈ (𝑅 RingIso 𝑇))
 
Theoremricsym 42551 Ring isomorphism is symmetric. (Contributed by SN, 10-Jan-2025.)
(𝑅𝑟 𝑆𝑆𝑟 𝑅)
 
Theoremrictr 42552 Ring isomorphism is transitive. (Contributed by SN, 17-Jan-2025.)
((𝑅𝑟 𝑆𝑆𝑟 𝑇) → 𝑅𝑟 𝑇)
 
Theoremriccrng1 42553 Ring isomorphism preserves (multiplicative) commutativity. (Contributed by SN, 10-Jan-2025.)
((𝑅𝑟 𝑆𝑅 ∈ CRing) → 𝑆 ∈ CRing)
 
Theoremriccrng 42554 A ring is commutative if and only if an isomorphic ring is commutative. (Contributed by SN, 10-Jan-2025.)
(𝑅𝑟 𝑆 → (𝑅 ∈ CRing ↔ 𝑆 ∈ CRing))
 
Theoremdomnexpgn0cl 42555 In a domain, a (nonnegative) power of a nonzero element is nonzero. (Contributed by SN, 6-Jul-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    = (.g‘(mulGrp‘𝑅))    &   (𝜑𝑅 ∈ Domn)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑋 ∈ (𝐵 ∖ { 0 }))       (𝜑 → (𝑁 𝑋) ∈ (𝐵 ∖ { 0 }))
 
Theoremdrnginvrn0d 42556 A multiplicative inverse in a division ring is nonzero. (recne0d 11888 analog). (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐼 = (invr𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑋0 )       (𝜑 → (𝐼𝑋) ≠ 0 )
 
Theoremdrngmullcan 42557 Cancellation of a nonzero factor on the left for multiplication. (mulcanad 11749 analog). (Contributed by SN, 14-Aug-2024.) (Proof shortened by SN, 25-Jun-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑍0 )    &   (𝜑 → (𝑍 · 𝑋) = (𝑍 · 𝑌))       (𝜑𝑋 = 𝑌)
 
Theoremdrngmulrcan 42558 Cancellation of a nonzero factor on the right for multiplication. (mulcan2ad 11750 analog). (Contributed by SN, 14-Aug-2024.) (Proof shortened by SN, 25-Jun-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑍0 )    &   (𝜑 → (𝑋 · 𝑍) = (𝑌 · 𝑍))       (𝜑𝑋 = 𝑌)
 
Theoremdrnginvmuld 42559 Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   𝐼 = (invr𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )       (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼𝑌) · (𝐼𝑋)))
 
Theoremricdrng1 42560 A ring isomorphism maps a division ring to a division ring. (Contributed by SN, 18-Feb-2025.)
((𝑅𝑟 𝑆𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
 
Theoremricdrng 42561 A ring is a division ring if and only if an isomorphic ring is a division ring. (Contributed by SN, 18-Feb-2025.)
(𝑅𝑟 𝑆 → (𝑅 ∈ DivRing ↔ 𝑆 ∈ DivRing))
 
Theoremricfld 42562 A ring is a field if and only if an isomorphic ring is a field. (Contributed by SN, 18-Feb-2025.)
(𝑅𝑟 𝑆 → (𝑅 ∈ Field ↔ 𝑆 ∈ Field))
 
Theoremasclf1 42563* Two ways of saying the scalar injection is one-to-one. (Contributed by SN, 3-Jul-2025.)
𝐴 = (algSc‘𝑊)    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Scalar‘𝑊)    &   𝐾 = (Base‘𝑆)    &    0 = (0g𝑊)    &   𝑁 = (0g𝑆)    &   (𝜑𝑊 ∈ Ring)    &   (𝜑𝑊 ∈ LMod)       (𝜑 → (𝐴:𝐾1-1𝐵 ↔ ∀𝑠𝐾 ((𝐴𝑠) = 0𝑠 = 𝑁)))
 
Theoremabvexp 42564 Move exponentiation in and out of absolute value. (Contributed by SN, 3-Jul-2025.)
𝐴 = (AbsVal‘𝑅)    &    = (.g‘(mulGrp‘𝑅))    &   𝐵 = (Base‘𝑅)    &   (𝜑𝑅 ∈ NzRing)    &   (𝜑𝐹𝐴)    &   (𝜑𝑋𝐵)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (𝐹‘(𝑁 𝑋)) = ((𝐹𝑋)↑𝑁))
 
Theoremfimgmcyclem 42565* Lemma for fimgmcyc 42566. (Contributed by SN, 7-Jul-2025.)
(𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))       (𝜑 → ∃𝑜 ∈ ℕ ∃𝑞 ∈ ℕ (𝑜 < 𝑞 ∧ (𝑜 · 𝐴) = (𝑞 · 𝐴)))
 
Theoremfimgmcyc 42566* Version of odcl2 19475 for finite magmas: the multiples of an element 𝐴𝐵 are eventually periodic. (Contributed by SN, 3-Jul-2025.)
𝐵 = (Base‘𝑀)    &    · = (.g𝑀)    &   (𝜑𝑀 ∈ Mgm)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐴𝐵)       (𝜑 → ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 · 𝐴) = ((𝑜 + 𝑝) · 𝐴))
 
Theoremfidomncyc 42567* Version of odcl2 19475 for multiplicative groups of finite domains (that is, a finite monoid where nonzero elements are cancellable): one (1) is a multiple of any nonzero element. (Contributed by SN, 3-Jul-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &    = (.g‘(mulGrp‘𝑅))    &   (𝜑𝑅 ∈ Domn)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))       (𝜑 → ∃𝑛 ∈ ℕ (𝑛 𝐴) = 1 )
 
Theoremfiabv 42568* In a finite domain (a finite field), the only absolute value is the trivial one (abvtrivg 20746). (Contributed by SN, 3-Jul-2025.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑇 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))    &   (𝜑𝑅 ∈ Domn)    &   (𝜑𝐵 ∈ Fin)       (𝜑𝐴 = {𝑇})
 
Theoremlvecgrp 42569 A vector space is a group. (Contributed by SN, 28-May-2023.)
(𝑊 ∈ LVec → 𝑊 ∈ Grp)
 
Theoremlvecring 42570 The scalar component of a vector space is a ring. (Contributed by SN, 28-May-2023.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ LVec → 𝐹 ∈ Ring)
 
Theoremfrlm0vald 42571 All coordinates of the zero vector are zero. (Contributed by SN, 14-Aug-2024.)
𝐹 = (𝑅 freeLMod 𝐼)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝑊)    &   (𝜑𝐽𝐼)       (𝜑 → ((0g𝐹)‘𝐽) = 0 )
 
Theoremfrlmsnic 42572* Given a free module with a singleton as the index set, that is, a free module of one-dimensional vectors, the function that maps each vector to its coordinate is a module isomorphism from that module to its ring of scalars seen as a module. (Contributed by Steven Nguyen, 18-Aug-2023.)
𝑊 = (𝐾 freeLMod {𝐼})    &   𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼))       ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)))
 
Theoremuvccl 42573 A unit vector is a vector. (Contributed by Steven Nguyen, 16-Jul-2023.)
𝑈 = (𝑅 unitVec 𝐼)    &   𝑌 = (𝑅 freeLMod 𝐼)    &   𝐵 = (Base‘𝑌)       ((𝑅 ∈ Ring ∧ 𝐼𝑊𝐽𝐼) → (𝑈𝐽) ∈ 𝐵)
 
Theoremuvcn0 42574 A unit vector is nonzero. (Contributed by Steven Nguyen, 16-Jul-2023.)
𝑈 = (𝑅 unitVec 𝐼)    &   𝑌 = (𝑅 freeLMod 𝐼)    &   𝐵 = (Base‘𝑌)    &    0 = (0g𝑌)       ((𝑅 ∈ NzRing ∧ 𝐼𝑊𝐽𝐼) → (𝑈𝐽) ≠ 0 )
 
Theorempwselbasr 42575 The reverse direction of pwselbasb 17389: a function between the index and base set of a structure is an element of the structure power. (Contributed by SN, 29-Jul-2024.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑅)    &   𝑉 = (Base‘𝑌)    &   (𝜑𝑅𝑊)    &   (𝜑𝐼𝑍)    &   (𝜑𝑋:𝐼𝐵)       (𝜑𝑋𝑉)
 
Theorempwsgprod 42576* Finite products in a power structure are taken componentwise. Compare pwsgsum 19892. (Contributed by SN, 30-Jul-2024.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑅)    &    1 = (1r𝑌)    &   𝑀 = (mulGrp‘𝑌)    &   𝑇 = (mulGrp‘𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝑊)    &   (𝜑𝑅 ∈ CRing)    &   ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)    &   (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )       (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))))
 
Theorempsrmnd 42577 The ring of power series is a monoid. (Contributed by SN, 25-Apr-2025.)
𝑆 = (𝐼 mPwSer 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Mnd)       (𝜑𝑆 ∈ Mnd)
 
Theorempsrbagres 42578* Restrict a bag of variables in 𝐼 to a bag of variables in 𝐽𝐼. (Contributed by SN, 10-Mar-2025.)
𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐸 = {𝑔 ∈ (ℕ0m 𝐽) ∣ (𝑔 “ ℕ) ∈ Fin}    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝐼)    &   (𝜑𝐹𝐷)       (𝜑 → (𝐹𝐽) ∈ 𝐸)
 
Theoremmplcrngd 42579 The polynomial ring is a commutative ring. (Contributed by SN, 7-Feb-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)       (𝜑𝑃 ∈ CRing)
 
Theoremmplsubrgcl 42580 An element of a polynomial algebra over a subring is an element of the polynomial algebra. (Contributed by SN, 9-Feb-2025.)
𝑊 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐵 = (Base‘𝑊)    &   𝑃 = (𝐼 mPoly 𝑆)    &   𝐶 = (Base‘𝑃)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐹𝐵)       (𝜑𝐹𝐶)
 
Theoremmhmcopsr 42581 The composition of a monoid homomorphism and a power series is a power series. (Contributed by SN, 18-May-2025.)
𝑃 = (𝐼 mPwSer 𝑅)    &   𝑄 = (𝐼 mPwSer 𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Base‘𝑄)    &   (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))    &   (𝜑𝐹𝐵)       (𝜑 → (𝐻𝐹) ∈ 𝐶)
 
Theoremmhmcoaddpsr 42582 Show that the ring homomorphism in rhmpsr 42584 preserves addition. (Contributed by SN, 18-May-2025.)
𝑃 = (𝐼 mPwSer 𝑅)    &   𝑄 = (𝐼 mPwSer 𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Base‘𝑄)    &    + = (+g𝑃)    &    = (+g𝑄)    &   (𝜑𝐻 ∈ (𝑅 MndHom 𝑆))    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))
 
Theoremrhmcomulpsr 42583 Show that the ring homomorphism in rhmpsr 42584 preserves multiplication. (Contributed by SN, 18-May-2025.)
𝑃 = (𝐼 mPwSer 𝑅)    &   𝑄 = (𝐼 mPwSer 𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐶 = (Base‘𝑄)    &    · = (.r𝑃)    &    = (.r𝑄)    &   (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))    &   (𝜑𝐹𝐵)    &   (𝜑𝐺𝐵)       (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻𝐹) (𝐻𝐺)))
 
Theoremrhmpsr 42584* Provide a ring homomorphism between two power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025.)
𝑃 = (𝐼 mPwSer 𝑅)    &   𝑄 = (𝐼 mPwSer 𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))    &   (𝜑𝐼𝑉)    &   (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))       (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
 
Theoremrhmpsr1 42585* Provide a ring homomorphism between two univariate power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025.)
𝑃 = (PwSer1𝑅)    &   𝑄 = (PwSer1𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐹 = (𝑝𝐵 ↦ (𝐻𝑝))    &   (𝜑𝐻 ∈ (𝑅 RingHom 𝑆))       (𝜑𝐹 ∈ (𝑃 RingHom 𝑄))
 
Theoremmplascl0 42586 The zero scalar as a polynomial. (Contributed by SN, 23-Nov-2024.)
𝑊 = (𝐼 mPoly 𝑅)    &   𝐴 = (algSc‘𝑊)    &   𝑂 = (0g𝑅)    &    0 = (0g𝑊)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Ring)       (𝜑 → (𝐴𝑂) = 0 )
 
Theoremmplascl1 42587 The one scalar as a polynomial. (Contributed by SN, 12-Mar-2025.)
𝑊 = (𝐼 mPoly 𝑅)    &   𝐴 = (algSc‘𝑊)    &   𝑂 = (1r𝑅)    &    1 = (1r𝑊)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Ring)       (𝜑 → (𝐴𝑂) = 1 )
 
Theoremmplmapghm 42588* The function 𝐻 mapping polynomials 𝑝 to their coefficient given a bag of variables 𝐹 is a group homomorphism. (Contributed by SN, 15-Mar-2025.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}    &   𝐻 = (𝑝𝐵 ↦ (𝑝𝐹))    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ Grp)    &   (𝜑𝐹𝐷)       (𝜑𝐻 ∈ (𝑃 GrpHom 𝑅))
 
Theoremevl0 42589 The zero polynomial evaluates to zero. (Contributed by SN, 23-Nov-2024.)
𝑄 = (𝐼 eval 𝑅)    &   𝐵 = (Base‘𝑅)    &   𝑊 = (𝐼 mPoly 𝑅)    &   𝑂 = (0g𝑅)    &    0 = (0g𝑊)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)       (𝜑 → (𝑄0 ) = ((𝐵m 𝐼) × {𝑂}))
 
Theoremevlscl 42590 A polynomial over the ring 𝑅 evaluates to an element in 𝑅. (Contributed by SN, 12-Mar-2025.)
𝑄 = ((𝐼 evalSub 𝑅)‘𝑆)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑅s 𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐾 = (Base‘𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑆 ∈ (SubRing‘𝑅))    &   (𝜑𝐹𝐵)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → ((𝑄𝐹)‘𝐴) ∈ 𝐾)
 
Theoremevlsval3 42591* Give a formula for the polynomial evaluation homomorphism. (Contributed by SN, 26-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝐵 = (Base‘𝑃)    &   𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐾 = (Base‘𝑆)    &   𝑈 = (𝑆s 𝑅)    &   𝑇 = (𝑆s (𝐾m 𝐼))    &   𝑀 = (mulGrp‘𝑇)    &    = (.g𝑀)    &    · = (.r𝑇)    &   𝐸 = (𝑝𝐵 ↦ (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑀 Σg (𝑏f 𝐺))))))    &   𝐹 = (𝑥𝑅 ↦ ((𝐾m 𝐼) × {𝑥}))    &   𝐺 = (𝑥𝐼 ↦ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)))    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))       (𝜑𝑄 = 𝐸)
 
Theoremevlsvval 42592* Give a formula for the evaluation of a polynomial. (Contributed by SN, 9-Feb-2025.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝐵 = (Base‘𝑃)    &   𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐾 = (Base‘𝑆)    &   𝑈 = (𝑆s 𝑅)    &   𝑇 = (𝑆s (𝐾m 𝐼))    &   𝑀 = (mulGrp‘𝑇)    &    = (.g𝑀)    &    · = (.r𝑇)    &   𝐹 = (𝑥𝑅 ↦ ((𝐾m 𝐼) × {𝑥}))    &   𝐺 = (𝑥𝐼 ↦ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)))    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐴𝐵)       (𝜑 → (𝑄𝐴) = (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝐴𝑏)) · (𝑀 Σg (𝑏f 𝐺))))))
 
Theoremevlsvvvallem 42593* Lemma for evlsvvval 42595 akin to psrbagev2 22011. (Contributed by SN, 6-Mar-2025.)
𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐾 = (Base‘𝑆)    &   𝑀 = (mulGrp‘𝑆)    &    = (.g𝑀)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑𝐵𝐷)       (𝜑 → (𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣)))) ∈ 𝐾)
 
Theoremevlsvvvallem2 42594* Lemma for theorems using evlsvvval 42595. (Contributed by SN, 8-Mar-2025.)
𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝐾 = (Base‘𝑆)    &   𝑀 = (mulGrp‘𝑆)    &    = (.g𝑀)    &    · = (.r𝑆)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐹𝐵)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑣𝐼 ↦ ((𝑏𝑣) (𝐴𝑣)))))) finSupp (0g𝑆))
 
Theoremevlsvvval 42595* Give a formula for the evaluation of a polynomial given assignments from variables to values. This is the sum of the evaluations for each term (corresponding to a bag of variables), that is, the coefficient times the product of each variable raised to the corresponding power. (Contributed by SN, 5-Mar-2025.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝐵 = (Base‘𝑃)    &   𝑈 = (𝑆s 𝑅)    &   𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐾 = (Base‘𝑆)    &   𝑀 = (mulGrp‘𝑆)    &    = (.g𝑀)    &    · = (.r𝑆)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐹𝐵)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → ((𝑄𝐹)‘𝐴) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹𝑏) · (𝑀 Σg (𝑖𝐼 ↦ ((𝑏𝑖) (𝐴𝑖))))))))
 
Theoremevlsscaval 42596 Polynomial evaluation builder for a scalar. Compare evl1scad 22248. Note that scalar multiplication by 𝑋 is the same as vector multiplication by (𝐴𝑋) by asclmul1 21821. (Contributed by SN, 27-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐴 = (algSc‘𝑃)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝑋𝑅)    &   (𝜑𝐿 ∈ (𝐾m 𝐼))       (𝜑 → ((𝐴𝑋) ∈ 𝐵 ∧ ((𝑄‘(𝐴𝑋))‘𝐿) = 𝑋))
 
Theoremevlsvarval 42597 Polynomial evaluation builder for a variable. (Contributed by SN, 27-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑉 = (𝐼 mVar 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝑋𝐼)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → ((𝑉𝑋) ∈ 𝐵 ∧ ((𝑄‘(𝑉𝑋))‘𝐴) = (𝐴𝑋)))
 
Theoremevlsbagval 42598* Polynomial evaluation builder for a bag of variables. EDITORIAL: This theorem should stay in my mathbox until there's another use, since 0 and 1 using 𝑈 instead of 𝑆 may not be convenient. (Contributed by SN, 29-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝑊 = (Base‘𝑃)    &   𝐾 = (Base‘𝑆)    &   𝑀 = (mulGrp‘𝑆)    &    = (.g𝑀)    &    0 = (0g𝑈)    &    1 = (1r𝑈)    &   𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐹 = (𝑠𝐷 ↦ if(𝑠 = 𝐵, 1 , 0 ))    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑𝐵𝐷)       (𝜑 → (𝐹𝑊 ∧ ((𝑄𝐹)‘𝐴) = (𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))))
 
Theoremevlsexpval 42599 Polynomial evaluation builder for exponentiation. (Contributed by SN, 27-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝐼𝑍)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))    &    = (.g‘(mulGrp‘𝑃))    &    = (.g‘(mulGrp‘𝑆))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝑁 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 𝑀))‘𝐴) = (𝑁 𝑉)))
 
Theoremevlsaddval 42600 Polynomial evaluation builder for addition. (Contributed by SN, 27-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝐼𝑍)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))    &   (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))    &    = (+g𝑃)    &    + = (+g𝑆)       (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 + 𝑊)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49800 499 49801-49836
  Copyright terms: Public domain < Previous  Next >