| Metamath
Proof Explorer Theorem List (p. 426 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | repncan3 42501 | Addition and subtraction of equals. Based on pncan3 11375. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (𝐵 −ℝ 𝐴)) = 𝐵) | ||
| Theorem | readdsub 42502 | Law for addition and subtraction. (Contributed by Steven Nguyen, 28-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ 𝐶) = ((𝐴 −ℝ 𝐶) + 𝐵)) | ||
| Theorem | reladdrsub 42503 | Move LHS of a sum into RHS of a (real) difference. Version of mvlladdd 11535 with real subtraction. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 𝐶) ⇒ ⊢ (𝜑 → 𝐵 = (𝐶 −ℝ 𝐴)) | ||
| Theorem | reltsub1 42504 | Subtraction from both sides of 'less than'. Compare ltsub1 11620. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 −ℝ 𝐶) < (𝐵 −ℝ 𝐶))) | ||
| Theorem | reltsubadd2 42505 | 'Less than' relationship between addition and subtraction. Compare ltsubadd2 11595. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) < 𝐶 ↔ 𝐴 < (𝐵 + 𝐶))) | ||
| Theorem | resubcan2 42506 | Cancellation law for real subtraction. Compare subcan2 11393. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) = (𝐵 −ℝ 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | resubsub4 42507 | Law for double subtraction. Compare subsub4 11401. (Contributed by Steven Nguyen, 14-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) −ℝ 𝐶) = (𝐴 −ℝ (𝐵 + 𝐶))) | ||
| Theorem | rennncan2 42508 | Cancellation law for real subtraction. Compare nnncan2 11405. (Contributed by Steven Nguyen, 14-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐶) −ℝ (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐵)) | ||
| Theorem | renpncan3 42509 | Cancellation law for real subtraction. Compare npncan3 11406. (Contributed by Steven Nguyen, 28-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 −ℝ 𝐵) + (𝐶 −ℝ 𝐴)) = (𝐶 −ℝ 𝐵)) | ||
| Theorem | repnpcan 42510 | Cancellation law for addition and real subtraction. Compare pnpcan 11407. (Contributed by Steven Nguyen, 19-May-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) −ℝ (𝐴 + 𝐶)) = (𝐵 −ℝ 𝐶)) | ||
| Theorem | reppncan 42511 | Cancellation law for mixed addition and real subtraction. Compare ppncan 11410. (Contributed by SN, 3-Sep-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + (𝐵 −ℝ 𝐶)) = (𝐴 + 𝐵)) | ||
| Theorem | resubidaddlidlem 42512 | Lemma for resubidaddlid 42513. A special case of npncan 11389. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝐴 −ℝ 𝐵) = (𝐵 −ℝ 𝐶)) ⇒ ⊢ (𝜑 → ((𝐴 −ℝ 𝐵) + (𝐵 −ℝ 𝐶)) = (𝐴 −ℝ 𝐶)) | ||
| Theorem | resubidaddlid 42513 | Any real number subtracted from itself forms a left additive identity. (Contributed by Steven Nguyen, 8-Jan-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 −ℝ 𝐴) + 𝐵) = 𝐵) | ||
| Theorem | resubdi 42514 | Distribution of multiplication over real subtraction. (Contributed by Steven Nguyen, 3-Jun-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · (𝐵 −ℝ 𝐶)) = ((𝐴 · 𝐵) −ℝ (𝐴 · 𝐶))) | ||
| Theorem | re1m1e0m0 42515 | Equality of two left-additive identities. See resubidaddlid 42513. Uses ax-i2m1 11081. (Contributed by SN, 25-Dec-2023.) |
| ⊢ (1 −ℝ 1) = (0 −ℝ 0) | ||
| Theorem | sn-00idlem1 42516 | Lemma for sn-00id 42519. (Contributed by SN, 25-Dec-2023.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · (0 −ℝ 0)) = (𝐴 −ℝ 𝐴)) | ||
| Theorem | sn-00idlem2 42517 | Lemma for sn-00id 42519. (Contributed by SN, 25-Dec-2023.) |
| ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) = 1) | ||
| Theorem | sn-00idlem3 42518 | Lemma for sn-00id 42519. (Contributed by SN, 25-Dec-2023.) |
| ⊢ ((0 −ℝ 0) = 1 → (0 + 0) = 0) | ||
| Theorem | sn-00id 42519 | 00id 11295 proven without ax-mulcom 11077 but using ax-1ne0 11082. (Though note that the current version of 00id 11295 can be changed to avoid ax-icn 11072, ax-addcl 11073, ax-mulcl 11075, ax-i2m1 11081, ax-cnre 11086. Most of this is by using 0cnALT3 42371 instead of 0cn 11111). (Contributed by SN, 25-Dec-2023.) (Proof modification is discouraged.) |
| ⊢ (0 + 0) = 0 | ||
| Theorem | re0m0e0 42520 | Real number version of 0m0e0 12247 proven without ax-mulcom 11077. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (0 −ℝ 0) = 0 | ||
| Theorem | readdlid 42521 | Real number version of addlid 11303. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) | ||
| Theorem | sn-addlid 42522 | addlid 11303 without ax-mulcom 11077. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | ||
| Theorem | remul02 42523 | Real number version of mul02 11298 proven without ax-mulcom 11077. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) | ||
| Theorem | sn-0ne2 42524 | 0ne2 12334 without ax-mulcom 11077. (Contributed by SN, 23-Jan-2024.) |
| ⊢ 0 ≠ 2 | ||
| Theorem | remul01 42525 | Real number version of mul01 11299 proven without ax-mulcom 11077. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 · 0) = 0) | ||
| Theorem | sn-remul0ord 42526 | A product is zero iff one of its factors are zero. (Contributed by SN, 24-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) | ||
| Theorem | resubid 42527 | Subtraction of a real number from itself (compare subid 11387). (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 −ℝ 𝐴) = 0) | ||
| Theorem | readdrid 42528 | Real number version of addrid 11300 without ax-mulcom 11077. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) | ||
| Theorem | resubid1 42529 | Real number version of subid1 11388 without ax-mulcom 11077. (Contributed by SN, 23-Jan-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 −ℝ 0) = 𝐴) | ||
| Theorem | renegneg 42530 | A real number is equal to the negative of its negative. Compare negneg 11418. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (0 −ℝ (0 −ℝ 𝐴)) = 𝐴) | ||
| Theorem | readdcan2 42531 | Commuted version of readdcan 11294 without ax-mulcom 11077. (Contributed by SN, 21-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | renegid2 42532 | Commuted version of renegid 42491. (Contributed by SN, 4-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → ((0 −ℝ 𝐴) + 𝐴) = 0) | ||
| Theorem | remulneg2d 42533 | Product with negative is negative of product. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 · (0 −ℝ 𝐵)) = (0 −ℝ (𝐴 · 𝐵))) | ||
| Theorem | sn-it0e0 42534 | Proof of it0e0 12351 without ax-mulcom 11077. Informally, a real number times 0 is 0, and ∃𝑟 ∈ ℝ𝑟 = i · 𝑠 by ax-cnre 11086 and renegid2 42532. (Contributed by SN, 30-Apr-2024.) |
| ⊢ (i · 0) = 0 | ||
| Theorem | sn-negex12 42535* | A combination of cnegex 11301 and cnegex2 11302, this proof takes cnre 11116 𝐴 = 𝑟 + i · 𝑠 and shows that i · -𝑠 + -𝑟 is both a left and right inverse. (Contributed by SN, 5-May-2024.) (Proof shortened by SN, 4-Jul-2025.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ ((𝐴 + 𝑏) = 0 ∧ (𝑏 + 𝐴) = 0)) | ||
| Theorem | sn-negex 42536* | Proof of cnegex 11301 without ax-mulcom 11077. (Contributed by SN, 30-Apr-2024.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝐴 + 𝑏) = 0) | ||
| Theorem | sn-negex2 42537* | Proof of cnegex2 11302 without ax-mulcom 11077. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑏 ∈ ℂ (𝑏 + 𝐴) = 0) | ||
| Theorem | sn-addcand 42538 | addcand 11323 without ax-mulcom 11077. Note how the proof is almost identical to addcan 11304. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | sn-addrid 42539 | addrid 11300 without ax-mulcom 11077. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
| Theorem | sn-addcan2d 42540 | addcan2d 11324 without ax-mulcom 11077. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | reixi 42541 | ixi 11753 without ax-mulcom 11077. (Contributed by SN, 5-May-2024.) |
| ⊢ (i · i) = (0 −ℝ 1) | ||
| Theorem | rei4 42542 | i4 14113 without ax-mulcom 11077. (Contributed by SN, 27-May-2024.) |
| ⊢ ((i · i) · (i · i)) = 1 | ||
| Theorem | sn-addid0 42543 | A number that sums to itself is zero. Compare addid0 11543, readdridaddlidd 42376. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
| Theorem | sn-mul01 42544 | mul01 11299 without ax-mulcom 11077. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | ||
| Theorem | sn-subeu 42545* | negeu 11357 without ax-mulcom 11077 and complex number version of resubeu 42495. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵) | ||
| Theorem | sn-subcl 42546 | subcl 11366 without ax-mulcom 11077. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | ||
| Theorem | sn-subf 42547 | subf 11369 without ax-mulcom 11077. (Contributed by SN, 5-May-2024.) |
| ⊢ − :(ℂ × ℂ)⟶ℂ | ||
| Theorem | resubeqsub 42548 | Equivalence between real subtraction and subtraction. (Contributed by SN, 5-May-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 −ℝ 𝐵) = (𝐴 − 𝐵)) | ||
| Theorem | subresre 42549 | Subtraction restricted to the reals. (Contributed by SN, 5-May-2024.) |
| ⊢ −ℝ = ( − ↾ (ℝ × ℝ)) | ||
| Theorem | addinvcom 42550 | A number commutes with its additive inverse. Compare remulinvcom 42551. (Contributed by SN, 5-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = 0) ⇒ ⊢ (𝜑 → (𝐵 + 𝐴) = 0) | ||
| Theorem | remulinvcom 42551 | A left multiplicative inverse is a right multiplicative inverse. Proven without ax-mulcom 11077. (Contributed by SN, 5-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴 · 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐵 · 𝐴) = 1) | ||
| Theorem | remullid 42552 | Commuted version of ax-1rid 11083 without ax-mulcom 11077. (Contributed by SN, 5-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) | ||
| Theorem | sn-1ticom 42553 | Lemma for sn-mullid 42554 and sn-it1ei 42555. (Contributed by SN, 27-May-2024.) |
| ⊢ (1 · i) = (i · 1) | ||
| Theorem | sn-mullid 42554 | mullid 11118 without ax-mulcom 11077. (Contributed by SN, 27-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
| Theorem | sn-it1ei 42555 | it1ei 42434 without ax-mulcom 11077. (See sn-mullid 42554 for commuted version). (Contributed by SN, 1-Jun-2024.) |
| ⊢ (i · 1) = i | ||
| Theorem | ipiiie0 42556 | The multiplicative inverse of i (per i4 14113) is also its additive inverse. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (i + (i · (i · i))) = 0 | ||
| Theorem | remulcand 42557 | Commuted version of remulcan2d 42375 without ax-mulcom 11077. (Contributed by SN, 21-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Syntax | crediv 42558 | Real number division. |
| class /ℝ | ||
| Definition | df-rediv 42559* | Define division between real numbers. This operator saves ax-mulcom 11077 over df-div 11782 in certain situations. (Contributed by SN, 25-Nov-2025.) |
| ⊢ /ℝ = (𝑥 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0}) ↦ (℩𝑧 ∈ ℝ (𝑦 · 𝑧) = 𝑥)) | ||
| Theorem | redivvald 42560* | Value of real division, which is the (unique) real 𝑥 such that (𝐵 · 𝑥) = 𝐴. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 /ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)) | ||
| Theorem | rediveud 42561* | Existential uniqueness of real quotients. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) | ||
| Theorem | sn-redivcld 42562 | Closure law for real division. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 /ℝ 𝐵) ∈ ℝ) | ||
| Theorem | redivmuld 42563 | Relationship between division and multiplication. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 /ℝ 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴)) | ||
| Theorem | redivcan2d 42564 | A cancellation law for division. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐵 · (𝐴 /ℝ 𝐵)) = 𝐴) | ||
| Theorem | redivcan3d 42565 | A cancellation law for division. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐴) /ℝ 𝐵) = 𝐴) | ||
| Theorem | sn-rereccld 42566 | Closure law for reciprocal. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (1 /ℝ 𝐴) ∈ ℝ) | ||
| Theorem | rerecid 42567 | Multiplication of a number and its reciprocal. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 · (1 /ℝ 𝐴)) = 1) | ||
| Theorem | rerecid2 42568 | Multiplication of a number and its reciprocal. (Contributed by SN, 25-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → ((1 /ℝ 𝐴) · 𝐴) = 1) | ||
| Theorem | sn-0tie0 42569 | Lemma for sn-mul02 42570. Commuted version of sn-it0e0 42534. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (0 · i) = 0 | ||
| Theorem | sn-mul02 42570 | mul02 11298 without ax-mulcom 11077. See https://github.com/icecream17/Stuff/blob/main/math/0A%3D0.md 11077 for an outline. (Contributed by SN, 30-Jun-2024.) |
| ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | ||
| Theorem | sn-ltaddpos 42571 | ltaddpos 11614 without ax-mulcom 11077. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) | ||
| Theorem | sn-ltaddneg 42572 | ltaddneg 11336 without ax-mulcom 11077. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐵 + 𝐴) < 𝐵)) | ||
| Theorem | reposdif 42573 | Comparison of two numbers whose difference is positive. Compare posdif 11617. (Contributed by SN, 13-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 −ℝ 𝐴))) | ||
| Theorem | relt0neg1 42574 | Comparison of a real and its negative to zero. Compare lt0neg1 11630. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < (0 −ℝ 𝐴))) | ||
| Theorem | relt0neg2 42575 | Comparison of a real and its negative to zero. Compare lt0neg2 11631. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (0 −ℝ 𝐴) < 0)) | ||
| Theorem | sn-addlt0d 42576 | The sum of negative numbers is negative. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 𝐵 < 0) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < 0) | ||
| Theorem | sn-addgt0d 42577 | The sum of positive numbers is positive. Proof of addgt0d 11699 without ax-mulcom 11077. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) | ||
| Theorem | sn-nnne0 42578 | nnne0 12166 without ax-mulcom 11077. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
| Theorem | reelznn0nn 42579 | elznn0nn 12489 restated using df-resub 42484. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ (0 −ℝ 𝑁) ∈ ℕ))) | ||
| Theorem | nn0addcom 42580 | Addition is commutative for nonnegative integers. Proven without ax-mulcom 11077. (Contributed by SN, 1-Feb-2025.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | zaddcomlem 42581 | Lemma for zaddcom 42582. (Contributed by SN, 1-Feb-2025.) |
| ⊢ (((𝐴 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | zaddcom 42582 | Addition is commutative for integers. Proven without ax-mulcom 11077. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | renegmulnnass 42583 | Move multiplication by a natural number inside and outside negation. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((0 −ℝ 𝐴) · 𝑁) = (0 −ℝ (𝐴 · 𝑁))) | ||
| Theorem | nn0mulcom 42584 | Multiplication is commutative for nonnegative integers. Proven without ax-mulcom 11077. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | zmulcomlem 42585 | Lemma for zmulcom 42586. (Contributed by SN, 25-Jan-2025.) |
| ⊢ (((𝐴 ∈ ℝ ∧ (0 −ℝ 𝐴) ∈ ℕ) ∧ 𝐵 ∈ ℕ0) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | zmulcom 42586 | Multiplication is commutative for integers. Proven without ax-mulcom 11077. From this result and grpcominv1 42626, we can show that rationals commute under multiplication without using ax-mulcom 11077. (Contributed by SN, 25-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | mulgt0con1dlem 42587 | Lemma for mulgt0con1d 42588. Contraposes a positive deduction to a negative deduction. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (0 < 𝐴 → 0 < 𝐵)) & ⊢ (𝜑 → (𝐴 = 0 → 𝐵 = 0)) ⇒ ⊢ (𝜑 → (𝐵 < 0 → 𝐴 < 0)) | ||
| Theorem | mulgt0con1d 42588 | Counterpart to mulgt0con2d 42589, though not a lemma. This is the first use of ax-pre-mulgt0 11090. One direction of mulgt0b2d 42596. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ (𝜑 → 𝐴 < 0) | ||
| Theorem | mulgt0con2d 42589 | Lemma for mulgt0b1d 42590 and contrapositive of mulgt0 11197. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → (𝐴 · 𝐵) < 0) ⇒ ⊢ (𝜑 → 𝐵 < 0) | ||
| Theorem | mulgt0b1d 42590 | Biconditional, deductive form of mulgt0 11197. The second factor is positive iff the product is. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → (0 < 𝐵 ↔ 0 < (𝐴 · 𝐵))) | ||
| Theorem | sn-ltmul2d 42591 | ltmul2d 12978 without ax-mulcom 11077. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐶) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) < (𝐶 · 𝐵) ↔ 𝐴 < 𝐵)) | ||
| Theorem | sn-ltmulgt11d 42592 | ltmulgt11d 12971 without ax-mulcom 11077. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → (1 < 𝐴 ↔ 𝐵 < (𝐵 · 𝐴))) | ||
| Theorem | sn-0lt1 42593 | 0lt1 11646 without ax-mulcom 11077. (Contributed by SN, 13-Feb-2024.) |
| ⊢ 0 < 1 | ||
| Theorem | sn-ltp1 42594 | ltp1 11968 without ax-mulcom 11077. (Contributed by SN, 13-Feb-2024.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | ||
| Theorem | sn-recgt0d 42595 | The reciprocal of a positive real is positive. (Contributed by SN, 26-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 0 < (1 /ℝ 𝐴)) | ||
| Theorem | mulgt0b2d 42596 | Biconditional, deductive form of mulgt0 11197. The first factor is positive iff the product is. (Contributed by SN, 24-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 · 𝐵))) | ||
| Theorem | sn-mulgt1d 42597 | mulgt1d 12065 without ax-mulcom 11077. (Contributed by SN, 26-Jun-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 1 < 𝐵) ⇒ ⊢ (𝜑 → 1 < (𝐴 · 𝐵)) | ||
| Theorem | reneg1lt0 42598 | Negative one is a negative number. (Contributed by SN, 1-Jun-2024.) |
| ⊢ (0 −ℝ 1) < 0 | ||
| Theorem | sn-reclt0d 42599 | The reciprocal of a negative real is negative. (Contributed by SN, 26-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → (1 /ℝ 𝐴) < 0) | ||
| Theorem | mulltgt0d 42600 | Negative times positive is negative. (Contributed by SN, 26-Nov-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |