|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > imimorb | Structured version Visualization version GIF version | ||
| Description: Simplify an implication between implications. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Wolf Lammen, 3-Apr-2013.) | 
| Ref | Expression | 
|---|---|
| imimorb | ⊢ (((𝜓 → 𝜒) → (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bi2.04 387 | . 2 ⊢ (((𝜓 → 𝜒) → (𝜑 → 𝜒)) ↔ (𝜑 → ((𝜓 → 𝜒) → 𝜒))) | |
| 2 | dfor2 902 | . . 3 ⊢ ((𝜓 ∨ 𝜒) ↔ ((𝜓 → 𝜒) → 𝜒)) | |
| 3 | 2 | imbi2i 336 | . 2 ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ (𝜑 → ((𝜓 → 𝜒) → 𝜒))) | 
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (((𝜓 → 𝜒) → (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 848 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 849 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |