Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imimorb | Structured version Visualization version GIF version |
Description: Simplify an implication between implications. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Wolf Lammen, 3-Apr-2013.) |
Ref | Expression |
---|---|
imimorb | ⊢ (((𝜓 → 𝜒) → (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 389 | . 2 ⊢ (((𝜓 → 𝜒) → (𝜑 → 𝜒)) ↔ (𝜑 → ((𝜓 → 𝜒) → 𝜒))) | |
2 | dfor2 899 | . . 3 ⊢ ((𝜓 ∨ 𝜒) ↔ ((𝜓 → 𝜒) → 𝜒)) | |
3 | 2 | imbi2i 336 | . 2 ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ (𝜑 → ((𝜓 → 𝜒) → 𝜒))) |
4 | 1, 3 | bitr4i 277 | 1 ⊢ (((𝜓 → 𝜒) → (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |