| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2.04 | Structured version Visualization version GIF version | ||
| Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| bi2.04 | ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.04 90 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | |
| 2 | pm2.04 90 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imim21b 394 pm4.87 843 imimorb 952 sbrimvw 2091 sbrim 2304 ralcom3 3086 r19.21vOLD 3166 r19.21t 3236 elabgtOLD 3652 reu8 3716 sbccomlem 3844 unissb 4915 unissbOLD 4916 reusv3 5375 fun11 6610 xpord3inddlem 8153 oeordi 8599 marypha1lem 9445 aceq1 10131 pwfseqlem3 10674 prime 12674 raluz2 12913 rlimresb 15581 isprm3 16702 isprm4 16703 acsfn 17671 pgpfac1 20063 pgpfac 20067 isdomn5 20670 fbfinnfr 23779 wilthlem3 27032 onsfi 28299 isch3 31222 elat2 32321 fvineqsneq 37430 isat3 39325 cdleme32fva 40456 indstrd 42206 elmapintrab 43600 ntrneik2 44116 ntrneix2 44117 ntrneikb 44118 pm10.541 44391 pm10.542 44392 |
| Copyright terms: Public domain | W3C validator |