| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2.04 | Structured version Visualization version GIF version | ||
| Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| bi2.04 | ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.04 90 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | |
| 2 | pm2.04 90 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imim21b 394 pm4.87 843 imimorb 952 sbrimvw 2092 sbrim 2304 ralcom3 3080 r19.21vOLD 3160 r19.21t 3232 elabgtOLDOLD 3643 reu8 3707 sbccomlem 3835 unissb 4906 unissbOLD 4907 reusv3 5363 fun11 6593 xpord3inddlem 8136 oeordi 8554 marypha1lem 9391 aceq1 10077 pwfseqlem3 10620 prime 12622 raluz2 12863 rlimresb 15538 isprm3 16660 isprm4 16661 acsfn 17627 pgpfac1 20019 pgpfac 20023 isdomn5 20626 fbfinnfr 23735 wilthlem3 26987 onsfi 28254 isch3 31177 elat2 32276 fvineqsneq 37407 isat3 39307 cdleme32fva 40438 indstrd 42188 elmapintrab 43572 ntrneik2 44088 ntrneix2 44089 ntrneikb 44090 pm10.541 44363 pm10.542 44364 |
| Copyright terms: Public domain | W3C validator |