Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bi2.04 | Structured version Visualization version GIF version |
Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
bi2.04 | ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.04 90 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | |
2 | pm2.04 90 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: imim21b 394 pm4.87 839 imimorb 947 sbrimvlem 2095 r19.21v 3100 r19.21t 3137 elabgt 3596 reu8 3663 unissb 4870 reusv3 5323 fun11 6492 oeordi 8380 marypha1lem 9122 aceq1 9804 pwfseqlem3 10347 prime 12331 raluz2 12566 rlimresb 15202 isprm3 16316 isprm4 16317 acsfn 17285 pgpfac1 19598 pgpfac 19602 fbfinnfr 22900 wilthlem3 26124 isch3 29504 elat2 30603 fvineqsneq 35510 isat3 37248 cdleme32fva 38378 isdomn5 40099 elmapintrab 41073 ntrneik2 41591 ntrneix2 41592 ntrneikb 41593 pm10.541 41874 pm10.542 41875 |
Copyright terms: Public domain | W3C validator |