Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bi2.04 | Structured version Visualization version GIF version |
Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
bi2.04 | ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.04 90 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | |
2 | pm2.04 90 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: imim21b 395 pm4.87 840 imimorb 948 sbrimvw 2094 sbrim 2301 r19.21vOLD 3114 r19.21t 3139 elabgt 3603 reu8 3668 unissb 4873 reusv3 5328 fun11 6508 oeordi 8418 marypha1lem 9192 aceq1 9873 pwfseqlem3 10416 prime 12401 raluz2 12637 rlimresb 15274 isprm3 16388 isprm4 16389 acsfn 17368 pgpfac1 19683 pgpfac 19687 fbfinnfr 22992 wilthlem3 26219 isch3 29603 elat2 30702 fvineqsneq 35583 isat3 37321 cdleme32fva 38451 isdomn5 40171 elmapintrab 41184 ntrneik2 41702 ntrneix2 41703 ntrneikb 41704 pm10.541 41985 pm10.542 41986 |
Copyright terms: Public domain | W3C validator |