| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2.04 | Structured version Visualization version GIF version | ||
| Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| bi2.04 | ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.04 90 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | |
| 2 | pm2.04 90 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imim21b 394 pm4.87 843 imimorb 952 sbrimvw 2092 sbrim 2304 ralcom3 3079 r19.21t 3223 elabgtOLDOLD 3629 reu8 3693 sbccomlem 3821 unissb 4890 reusv3 5344 fun11 6556 xpord3inddlem 8087 oeordi 8505 marypha1lem 9323 aceq1 10011 pwfseqlem3 10554 prime 12557 raluz2 12798 rlimresb 15472 isprm3 16594 isprm4 16595 acsfn 17565 pgpfac1 19961 pgpfac 19965 isdomn5 20595 fbfinnfr 23726 wilthlem3 26978 onsfi 28252 isch3 31185 elat2 32284 fvineqsneq 37386 isat3 39286 cdleme32fva 40416 indstrd 42166 elmapintrab 43549 ntrneik2 44065 ntrneix2 44066 ntrneikb 44067 pm10.541 44340 pm10.542 44341 |
| Copyright terms: Public domain | W3C validator |