![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bi2.04 | Structured version Visualization version GIF version |
Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
bi2.04 | ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.04 90 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | |
2 | pm2.04 90 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: imim21b 394 pm4.87 843 imimorb 952 sbrimvw 2088 sbrim 2302 ralcom3 3094 r19.21vOLD 3178 r19.21t 3250 elabgtOLD 3672 reu8 3741 sbccomlem 3877 unissb 4943 unissbOLD 4944 reusv3 5410 fun11 6641 xpord3inddlem 8177 oeordi 8623 marypha1lem 9470 aceq1 10154 pwfseqlem3 10697 prime 12696 raluz2 12936 rlimresb 15597 isprm3 16716 isprm4 16717 acsfn 17703 pgpfac1 20114 pgpfac 20118 isdomn5 20726 fbfinnfr 23864 wilthlem3 27127 isch3 31269 elat2 32368 fvineqsneq 37394 isat3 39288 cdleme32fva 40419 indstrd 42174 elmapintrab 43565 ntrneik2 44081 ntrneix2 44082 ntrneikb 44083 pm10.541 44362 pm10.542 44363 |
Copyright terms: Public domain | W3C validator |