MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bi2.04 Structured version   Visualization version   GIF version

Theorem bi2.04 389
Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 11-May-1993.)
Assertion
Ref Expression
bi2.04 ((𝜑 → (𝜓𝜒)) ↔ (𝜓 → (𝜑𝜒)))

Proof of Theorem bi2.04
StepHypRef Expression
1 pm2.04 90 . 2 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
2 pm2.04 90 . 2 ((𝜓 → (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
31, 2impbii 208 1 ((𝜑 → (𝜓𝜒)) ↔ (𝜓 → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  imim21b  395  pm4.87  840  imimorb  948  sbrimvw  2094  sbrim  2301  r19.21vOLD  3114  r19.21t  3139  elabgt  3603  reu8  3668  unissb  4873  reusv3  5328  fun11  6508  oeordi  8418  marypha1lem  9192  aceq1  9873  pwfseqlem3  10416  prime  12401  raluz2  12637  rlimresb  15274  isprm3  16388  isprm4  16389  acsfn  17368  pgpfac1  19683  pgpfac  19687  fbfinnfr  22992  wilthlem3  26219  isch3  29603  elat2  30702  fvineqsneq  35583  isat3  37321  cdleme32fva  38451  isdomn5  40171  elmapintrab  41184  ntrneik2  41702  ntrneix2  41703  ntrneikb  41704  pm10.541  41985  pm10.542  41986
  Copyright terms: Public domain W3C validator