| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2.04 | Structured version Visualization version GIF version | ||
| Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| bi2.04 | ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.04 90 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | |
| 2 | pm2.04 90 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imim21b 394 pm4.87 843 imimorb 952 sbrimvw 2092 sbrim 2304 ralcom3 3079 r19.21t 3229 elabgtOLDOLD 3637 reu8 3701 sbccomlem 3829 unissb 4899 unissbOLD 4900 reusv3 5355 fun11 6574 xpord3inddlem 8110 oeordi 8528 marypha1lem 9360 aceq1 10046 pwfseqlem3 10589 prime 12591 raluz2 12832 rlimresb 15507 isprm3 16629 isprm4 16630 acsfn 17600 pgpfac1 19996 pgpfac 20000 isdomn5 20630 fbfinnfr 23761 wilthlem3 27013 onsfi 28287 isch3 31220 elat2 32319 fvineqsneq 37393 isat3 39293 cdleme32fva 40424 indstrd 42174 elmapintrab 43558 ntrneik2 44074 ntrneix2 44075 ntrneikb 44076 pm10.541 44349 pm10.542 44350 |
| Copyright terms: Public domain | W3C validator |