![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bi2.04 | Structured version Visualization version GIF version |
Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
bi2.04 | ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.04 90 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | |
2 | pm2.04 90 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: imim21b 394 pm4.87 842 imimorb 951 sbrimvw 2091 sbrim 2308 ralcom3 3103 r19.21vOLD 3187 r19.21t 3259 elabgtOLD 3686 reu8 3755 sbccomlem 3891 unissb 4963 unissbOLD 4964 reusv3 5423 fun11 6652 xpord3inddlem 8195 oeordi 8643 marypha1lem 9502 aceq1 10186 pwfseqlem3 10729 prime 12724 raluz2 12962 rlimresb 15611 isprm3 16730 isprm4 16731 acsfn 17717 pgpfac1 20124 pgpfac 20128 isdomn5 20732 fbfinnfr 23870 wilthlem3 27131 isch3 31273 elat2 32372 fvineqsneq 37378 isat3 39263 cdleme32fva 40394 indstrd 42150 elmapintrab 43538 ntrneik2 44054 ntrneix2 44055 ntrneikb 44056 pm10.541 44336 pm10.542 44337 |
Copyright terms: Public domain | W3C validator |