| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2.04 | Structured version Visualization version GIF version | ||
| Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| bi2.04 | ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.04 90 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | |
| 2 | pm2.04 90 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imim21b 394 pm4.87 843 imimorb 952 sbrimvw 2092 sbrim 2304 ralcom3 3079 r19.21vOLD 3159 r19.21t 3231 elabgtOLDOLD 3640 reu8 3704 sbccomlem 3832 unissb 4903 unissbOLD 4904 reusv3 5360 fun11 6590 xpord3inddlem 8133 oeordi 8551 marypha1lem 9384 aceq1 10070 pwfseqlem3 10613 prime 12615 raluz2 12856 rlimresb 15531 isprm3 16653 isprm4 16654 acsfn 17620 pgpfac1 20012 pgpfac 20016 isdomn5 20619 fbfinnfr 23728 wilthlem3 26980 onsfi 28247 isch3 31170 elat2 32269 fvineqsneq 37400 isat3 39300 cdleme32fva 40431 indstrd 42181 elmapintrab 43565 ntrneik2 44081 ntrneix2 44082 ntrneikb 44083 pm10.541 44356 pm10.542 44357 |
| Copyright terms: Public domain | W3C validator |