| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bi2.04 | Structured version Visualization version GIF version | ||
| Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| bi2.04 | ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.04 90 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | |
| 2 | pm2.04 90 | . 2 ⊢ ((𝜓 → (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: imim21b 394 pm4.87 843 imimorb 952 sbrimvw 2094 sbrim 2306 ralcom3 3082 r19.21t 3226 elabgtOLDOLD 3624 reu8 3687 sbccomlem 3815 unissb 4889 reusv3 5341 fun11 6555 xpord3inddlem 8084 oeordi 8502 marypha1lem 9317 aceq1 10008 pwfseqlem3 10551 prime 12554 raluz2 12795 rlimresb 15472 isprm3 16594 isprm4 16595 acsfn 17565 pgpfac1 19994 pgpfac 19998 isdomn5 20625 fbfinnfr 23756 wilthlem3 27007 onsfi 28283 isch3 31221 elat2 32320 fvineqsneq 37454 isat3 39354 cdleme32fva 40484 indstrd 42234 elmapintrab 43617 ntrneik2 44133 ntrneix2 44134 ntrneikb 44135 pm10.541 44408 pm10.542 44409 |
| Copyright terms: Public domain | W3C validator |