Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oibabs | Structured version Visualization version GIF version |
Description: Absorption of disjunction into equivalence. (Contributed by NM, 6-Aug-1995.) (Proof shortened by Wolf Lammen, 3-Nov-2013.) |
Ref | Expression |
---|---|
oibabs | ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) ↔ (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | norbi 884 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) | |
2 | id 22 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | ja 186 | . 2 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) → (𝜑 ↔ 𝜓)) |
4 | ax-1 6 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓))) | |
5 | 3, 4 | impbii 208 | 1 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) ↔ (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |