MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp5d Structured version   Visualization version   GIF version

Theorem imp5d 444
Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
Hypothesis
Ref Expression
imp5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
imp5d (((𝜑𝜓) ∧ 𝜒) → ((𝜃𝜏) → 𝜂))

Proof of Theorem imp5d
StepHypRef Expression
1 imp5.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21imp31 422 . 2 (((𝜑𝜓) ∧ 𝜒) → (𝜃 → (𝜏𝜂)))
32impd 415 1 (((𝜑𝜓) ∧ 𝜒) → ((𝜃𝜏) → 𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 401
This theorem is referenced by:  imp5a  445  bcthlem5  24013
  Copyright terms: Public domain W3C validator