MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp5a Structured version   Visualization version   GIF version

Theorem imp5a 440
Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.) (Proof shortened by Wolf Lammen, 2-Aug-2022.)
Hypothesis
Ref Expression
imp5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
imp5a (𝜑 → (𝜓 → (𝜒 → ((𝜃𝜏) → 𝜂))))

Proof of Theorem imp5a
StepHypRef Expression
1 imp5.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
21imp5d 439 . 2 (((𝜑𝜓) ∧ 𝜒) → ((𝜃𝜏) → 𝜂))
32exp31 419 1 (𝜑 → (𝜓 → (𝜒 → ((𝜃𝜏) → 𝜂))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  prtlem17  36817  tendospcanN  38964
  Copyright terms: Public domain W3C validator