| Step | Hyp | Ref
| Expression |
| 1 | | bcthlem.4 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
| 2 | | cmetmet 25243 |
. . . . . 6
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| 3 | | metxmet 24278 |
. . . . . 6
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 4 | 1, 2, 3 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 5 | | bcth.2 |
. . . . . . . 8
⊢ 𝐽 = (MetOpen‘𝐷) |
| 6 | 5 | mopntop 24384 |
. . . . . . 7
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
| 7 | 4, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ Top) |
| 8 | | bcthlem.6 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) |
| 9 | 8 | frnd 6719 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑀 ⊆ (Clsd‘𝐽)) |
| 10 | | eqid 2736 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 11 | 10 | cldss2 22973 |
. . . . . . . 8
⊢
(Clsd‘𝐽)
⊆ 𝒫 ∪ 𝐽 |
| 12 | 9, 11 | sstrdi 3976 |
. . . . . . 7
⊢ (𝜑 → ran 𝑀 ⊆ 𝒫 ∪ 𝐽) |
| 13 | | sspwuni 5081 |
. . . . . . 7
⊢ (ran
𝑀 ⊆ 𝒫 ∪ 𝐽
↔ ∪ ran 𝑀 ⊆ ∪ 𝐽) |
| 14 | 12, 13 | sylib 218 |
. . . . . 6
⊢ (𝜑 → ∪ ran 𝑀 ⊆ ∪ 𝐽) |
| 15 | 10 | ntropn 22992 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ ∪ ran 𝑀 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∪ ran 𝑀) ∈ 𝐽) |
| 16 | 7, 14, 15 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((int‘𝐽)‘∪ ran 𝑀) ∈ 𝐽) |
| 17 | 4, 16 | jca 511 |
. . . 4
⊢ (𝜑 → (𝐷 ∈ (∞Met‘𝑋) ∧ ((int‘𝐽)‘∪ ran
𝑀) ∈ 𝐽)) |
| 18 | 5 | mopni2 24437 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((int‘𝐽)‘∪ ran 𝑀) ∈ 𝐽 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀)) → ∃𝑚 ∈ ℝ+
(𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀)) |
| 19 | 18 | 3expa 1118 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ ((int‘𝐽)‘∪ ran 𝑀) ∈ 𝐽) ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀)) → ∃𝑚 ∈ ℝ+
(𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀)) |
| 20 | 17, 19 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀)) → ∃𝑚 ∈ ℝ+
(𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀)) |
| 21 | 5 | mopnuni 24385 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 22 | 4, 21 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 23 | 10 | topopn 22849 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ 𝐽) |
| 24 | 7, 23 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ 𝐽
∈ 𝐽) |
| 25 | 22, 24 | eqeltrd 2835 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| 26 | | reex 11225 |
. . . . . . . . . . 11
⊢ ℝ
∈ V |
| 27 | | rpssre 13021 |
. . . . . . . . . . 11
⊢
ℝ+ ⊆ ℝ |
| 28 | 26, 27 | ssexi 5297 |
. . . . . . . . . 10
⊢
ℝ+ ∈ V |
| 29 | | xpexg 7749 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐽 ∧ ℝ+ ∈ V) →
(𝑋 ×
ℝ+) ∈ V) |
| 30 | 25, 28, 29 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 × ℝ+) ∈
V) |
| 31 | 30 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → (𝑋 × ℝ+)
∈ V) |
| 32 | 10 | ntrss3 23003 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ∪ ran 𝑀 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∪ ran 𝑀) ⊆ ∪ 𝐽) |
| 33 | 7, 14, 32 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((int‘𝐽)‘∪ ran 𝑀) ⊆ ∪ 𝐽) |
| 34 | 33, 22 | sseqtrrd 4001 |
. . . . . . . . . . 11
⊢ (𝜑 → ((int‘𝐽)‘∪ ran 𝑀) ⊆ 𝑋) |
| 35 | 34 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) →
((int‘𝐽)‘∪ ran 𝑀) ⊆ 𝑋) |
| 36 | | simp2 1137 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → 𝑛 ∈ ((int‘𝐽)‘∪ ran 𝑀)) |
| 37 | 35, 36 | sseldd 3964 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → 𝑛 ∈ 𝑋) |
| 38 | | simp3 1138 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → 𝑚 ∈
ℝ+) |
| 39 | 37, 38 | opelxpd 5698 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) →
〈𝑛, 𝑚〉 ∈ (𝑋 ×
ℝ+)) |
| 40 | | opabssxp 5752 |
. . . . . . . . . . . . 13
⊢
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ⊆ (𝑋 ×
ℝ+) |
| 41 | | elpw2g 5308 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 × ℝ+)
∈ V → ({〈𝑥,
𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ 𝒫 (𝑋 × ℝ+) ↔
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ⊆ (𝑋 ×
ℝ+))) |
| 42 | 30, 41 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ({〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ 𝒫 (𝑋 × ℝ+) ↔
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ⊆ (𝑋 ×
ℝ+))) |
| 43 | 42 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
({〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ 𝒫 (𝑋 × ℝ+) ↔
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ⊆ (𝑋 ×
ℝ+))) |
| 44 | 40, 43 | mpbiri 258 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ 𝒫 (𝑋 ×
ℝ+)) |
| 45 | | bcthlem5.7 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) = ∅) |
| 46 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) → 𝑘 ∈
ℕ) |
| 47 | | rspa 3235 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑘 ∈
ℕ ((int‘𝐽)‘(𝑀‘𝑘)) = ∅ ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘(𝑀‘𝑘)) = ∅) |
| 48 | 45, 46, 47 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((int‘𝐽)‘(𝑀‘𝑘)) = ∅) |
| 49 | | ssdif0 4346 |
. . . . . . . . . . . . . . . . 17
⊢
(((ball‘𝐷)‘𝑧) ⊆ (𝑀‘𝑘) ↔ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) = ∅) |
| 50 | | 1st2nd2 8032 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ (𝑋 × ℝ+) → 𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉) |
| 51 | 50 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → 𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉) |
| 52 | 51 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((ball‘𝐷)‘𝑧) = ((ball‘𝐷)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉)) |
| 53 | | df-ov 7413 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑧)(ball‘𝐷)(2nd ‘𝑧)) = ((ball‘𝐷)‘〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
| 54 | 52, 53 | eqtr4di 2789 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((ball‘𝐷)‘𝑧) = ((1st
‘𝑧)(ball‘𝐷)(2nd ‘𝑧))) |
| 55 | 4 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → 𝐷 ∈ (∞Met‘𝑋)) |
| 56 | | xp1st 8025 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ (𝑋 × ℝ+) →
(1st ‘𝑧)
∈ 𝑋) |
| 57 | 56 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(1st ‘𝑧)
∈ 𝑋) |
| 58 | | xp2nd 8026 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ (𝑋 × ℝ+) →
(2nd ‘𝑧)
∈ ℝ+) |
| 59 | 58 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(2nd ‘𝑧)
∈ ℝ+) |
| 60 | | bln0 24359 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘𝑧) ∈ 𝑋 ∧ (2nd
‘𝑧) ∈
ℝ+) → ((1st ‘𝑧)(ball‘𝐷)(2nd ‘𝑧)) ≠ ∅) |
| 61 | 55, 57, 59, 60 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((1st ‘𝑧)(ball‘𝐷)(2nd ‘𝑧)) ≠ ∅) |
| 62 | 54, 61 | eqnetrd 3000 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((ball‘𝐷)‘𝑧) ≠ ∅) |
| 63 | 7 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → 𝐽 ∈ Top) |
| 64 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀:ℕ⟶(Clsd‘𝐽) ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ∈ (Clsd‘𝐽)) |
| 65 | 8, 46, 64 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝑀‘𝑘) ∈ (Clsd‘𝐽)) |
| 66 | 10 | cldss 22972 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀‘𝑘) ∈ (Clsd‘𝐽) → (𝑀‘𝑘) ⊆ ∪ 𝐽) |
| 67 | 65, 66 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝑀‘𝑘) ⊆ ∪ 𝐽) |
| 68 | 59 | rpxrd 13057 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(2nd ‘𝑧)
∈ ℝ*) |
| 69 | 5 | blopn 24444 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘𝑧) ∈ 𝑋 ∧ (2nd
‘𝑧) ∈
ℝ*) → ((1st ‘𝑧)(ball‘𝐷)(2nd ‘𝑧)) ∈ 𝐽) |
| 70 | 55, 57, 68, 69 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((1st ‘𝑧)(ball‘𝐷)(2nd ‘𝑧)) ∈ 𝐽) |
| 71 | 54, 70 | eqeltrd 2835 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((ball‘𝐷)‘𝑧) ∈ 𝐽) |
| 72 | 10 | ssntr 23001 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ Top ∧ (𝑀‘𝑘) ⊆ ∪ 𝐽) ∧ (((ball‘𝐷)‘𝑧) ∈ 𝐽 ∧ ((ball‘𝐷)‘𝑧) ⊆ (𝑀‘𝑘))) → ((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀‘𝑘))) |
| 73 | 72 | expr 456 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Top ∧ (𝑀‘𝑘) ⊆ ∪ 𝐽) ∧ ((ball‘𝐷)‘𝑧) ∈ 𝐽) → (((ball‘𝐷)‘𝑧) ⊆ (𝑀‘𝑘) → ((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀‘𝑘)))) |
| 74 | 63, 67, 71, 73 | syl21anc 837 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(((ball‘𝐷)‘𝑧) ⊆ (𝑀‘𝑘) → ((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀‘𝑘)))) |
| 75 | | ssn0 4384 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀‘𝑘)) ∧ ((ball‘𝐷)‘𝑧) ≠ ∅) → ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
| 76 | 75 | expcom 413 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ball‘𝐷)‘𝑧) ≠ ∅ → (((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀‘𝑘)) → ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅)) |
| 77 | 62, 74, 76 | sylsyld 61 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(((ball‘𝐷)‘𝑧) ⊆ (𝑀‘𝑘) → ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅)) |
| 78 | 49, 77 | biimtrrid 243 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) = ∅ → ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅)) |
| 79 | 78 | necon2d 2956 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(((int‘𝐽)‘(𝑀‘𝑘)) = ∅ → (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ≠ ∅)) |
| 80 | 48, 79 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ≠ ∅) |
| 81 | | n0 4333 |
. . . . . . . . . . . . . . 15
⊢
((((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) |
| 82 | 4 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → 𝐷 ∈ (∞Met‘𝑋)) |
| 83 | 10 | difopn 22977 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((ball‘𝐷)‘𝑧) ∈ 𝐽 ∧ (𝑀‘𝑘) ∈ (Clsd‘𝐽)) → (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ∈ 𝐽) |
| 84 | 71, 65, 83 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ∈ 𝐽) |
| 85 | 84 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ∈ 𝐽) |
| 86 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) |
| 87 | | simp2l 1200 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → 𝑘 ∈ ℕ) |
| 88 | | nnrp 13025 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
| 89 | 88 | rpreccld 13066 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ+) |
| 90 | 87, 89 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → (1 / 𝑘) ∈
ℝ+) |
| 91 | 5 | mopni3 24438 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ∈ 𝐽 ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) ∧ (1 / 𝑘) ∈ ℝ+) →
∃𝑛 ∈
ℝ+ (𝑛 <
(1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) |
| 92 | 82, 85, 86, 90, 91 | syl31anc 1375 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → ∃𝑛 ∈ ℝ+ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) |
| 93 | | simp1 1136 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → 𝜑) |
| 94 | | elssuni 4918 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((ball‘𝐷)‘𝑧) ∈ 𝐽 → ((ball‘𝐷)‘𝑧) ⊆ ∪ 𝐽) |
| 95 | 71, 94 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((ball‘𝐷)‘𝑧) ⊆ ∪ 𝐽) |
| 96 | 22 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → 𝑋 = ∪
𝐽) |
| 97 | 95, 96 | sseqtrrd 4001 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((ball‘𝐷)‘𝑧) ⊆ 𝑋) |
| 98 | 97 | ssdifssd 4127 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ⊆ 𝑋) |
| 99 | 98 | sseld 3962 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝑥 ∈
(((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) → 𝑥 ∈ 𝑋)) |
| 100 | 99 | 3impia 1117 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → 𝑥 ∈ 𝑋) |
| 101 | | simp2 1137 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 ×
ℝ+))) |
| 102 | | rphalfcl 13041 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ℝ+
→ (𝑛 / 2) ∈
ℝ+) |
| 103 | | rphalflt 13043 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ℝ+
→ (𝑛 / 2) < 𝑛) |
| 104 | | breq1 5127 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑟 = (𝑛 / 2) → (𝑟 < 𝑛 ↔ (𝑛 / 2) < 𝑛)) |
| 105 | 104 | rspcev 3606 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 / 2) ∈ ℝ+
∧ (𝑛 / 2) < 𝑛) → ∃𝑟 ∈ ℝ+
𝑟 < 𝑛) |
| 106 | 102, 103,
105 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ℝ+
→ ∃𝑟 ∈
ℝ+ 𝑟 <
𝑛) |
| 107 | 106 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+)
∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) → ∃𝑟 ∈ ℝ+ 𝑟 < 𝑛) |
| 108 | | df-rex 3062 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑟 ∈
ℝ+ 𝑟 <
𝑛 ↔ ∃𝑟(𝑟 ∈ ℝ+ ∧ 𝑟 < 𝑛)) |
| 109 | | simpr3 1197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈
ℝ+) |
| 110 | 109 | rpred 13056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈
ℝ) |
| 111 | | simpr1 1195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑛 ∈
ℝ+) |
| 112 | 111 | rpred 13056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑛 ∈
ℝ) |
| 113 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑘 ∈
ℕ) |
| 114 | 113 | nnrecred 12296 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → (1 /
𝑘) ∈
ℝ) |
| 115 | | simpr2 1196 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑟 < 𝑛) |
| 116 | | lttr 11316 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑟 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → ((𝑟 < 𝑛 ∧ 𝑛 < (1 / 𝑘)) → 𝑟 < (1 / 𝑘))) |
| 117 | 116 | expdimp 452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑟 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) ∧ 𝑟 < 𝑛) → (𝑛 < (1 / 𝑘) → 𝑟 < (1 / 𝑘))) |
| 118 | 110, 112,
114, 115, 117 | syl31anc 1375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → (𝑛 < (1 / 𝑘) → 𝑟 < (1 / 𝑘))) |
| 119 | 4 | anim1i 615 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋)) |
| 120 | 119 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝐷 ∈
(∞Met‘𝑋) ∧
𝑥 ∈ 𝑋)) |
| 121 | | rpxr 13023 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
| 122 | | rpxr 13023 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 ∈ ℝ+
→ 𝑛 ∈
ℝ*) |
| 123 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑟 < 𝑛 → 𝑟 < 𝑛) |
| 124 | 121, 122,
123 | 3anim123i 1151 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑟 ∈ ℝ+
∧ 𝑛 ∈
ℝ+ ∧ 𝑟
< 𝑛) → (𝑟 ∈ ℝ*
∧ 𝑛 ∈
ℝ* ∧ 𝑟
< 𝑛)) |
| 125 | 124 | 3coml 1127 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+) → (𝑟 ∈ ℝ*
∧ 𝑛 ∈
ℝ* ∧ 𝑟
< 𝑛)) |
| 126 | 5 | blsscls 24451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (𝑟 ∈ ℝ* ∧ 𝑛 ∈ ℝ*
∧ 𝑟 < 𝑛)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (𝑥(ball‘𝐷)𝑛)) |
| 127 | 120, 125,
126 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) →
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (𝑥(ball‘𝐷)𝑛)) |
| 128 | | sstr2 3970 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (𝑥(ball‘𝐷)𝑛) → ((𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) |
| 129 | 127, 128 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → ((𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) |
| 130 | 118, 129 | anim12d 609 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → ((𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))) |
| 131 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑥 ∈ 𝑋) |
| 132 | 131, 109 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → (𝑥 ∈ 𝑋 ∧ 𝑟 ∈
ℝ+)) |
| 133 | 130, 132 | jctild 525 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → ((𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
| 134 | 133 | 3exp2 1355 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝑛 ∈
ℝ+ → (𝑟 < 𝑛 → (𝑟 ∈ ℝ+ → ((𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))))))) |
| 135 | 134 | com35 98 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝑛 ∈
ℝ+ → ((𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → (𝑟 ∈ ℝ+ → (𝑟 < 𝑛 → ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))))))) |
| 136 | 135 | imp5d 439 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+)
∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) → ((𝑟 ∈ ℝ+ ∧ 𝑟 < 𝑛) → ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
| 137 | 136 | eximdv 1917 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+)
∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) → (∃𝑟(𝑟 ∈ ℝ+ ∧ 𝑟 < 𝑛) → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
| 138 | 108, 137 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+)
∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) → (∃𝑟 ∈ ℝ+ 𝑟 < 𝑛 → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
| 139 | 107, 138 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+)
∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))) |
| 140 | 139 | rexlimdva2 3144 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(∃𝑛 ∈
ℝ+ (𝑛 <
(1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
| 141 | 93, 100, 101, 140 | syl21anc 837 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → (∃𝑛 ∈ ℝ+ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
| 142 | 92, 141 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))) |
| 143 | 142 | 3expia 1121 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝑥 ∈
(((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
| 144 | 143 | eximdv 1917 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(∃𝑥 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) → ∃𝑥∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
| 145 | 81, 144 | biimtrid 242 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ≠ ∅ → ∃𝑥∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
| 146 | 80, 145 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
∃𝑥∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))) |
| 147 | | opabn0 5533 |
. . . . . . . . . . . . 13
⊢
({〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ≠ ∅ ↔ ∃𝑥∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))) |
| 148 | 146, 147 | sylibr 234 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ≠ ∅) |
| 149 | | eldifsn 4767 |
. . . . . . . . . . . 12
⊢
({〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ (𝒫 (𝑋 × ℝ+) ∖
{∅}) ↔ ({〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ 𝒫 (𝑋 × ℝ+) ∧
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ≠ ∅)) |
| 150 | 44, 148, 149 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ (𝒫 (𝑋 × ℝ+) ∖
{∅})) |
| 151 | 150 | ralrimivva 3188 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ ℕ ∀𝑧 ∈ (𝑋 × ℝ+){〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ (𝒫 (𝑋 × ℝ+) ∖
{∅})) |
| 152 | | bcthlem.5 |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) |
| 153 | 152 | fmpo 8072 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
ℕ ∀𝑧 ∈
(𝑋 ×
ℝ+){〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ (𝒫 (𝑋 × ℝ+) ∖
{∅}) ↔ 𝐹:(ℕ × (𝑋 ×
ℝ+))⟶(𝒫 (𝑋 × ℝ+) ∖
{∅})) |
| 154 | 151, 153 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(ℕ × (𝑋 ×
ℝ+))⟶(𝒫 (𝑋 × ℝ+) ∖
{∅})) |
| 155 | 154 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → 𝐹:(ℕ × (𝑋 ×
ℝ+))⟶(𝒫 (𝑋 × ℝ+) ∖
{∅})) |
| 156 | | 1z 12627 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
| 157 | | nnuz 12900 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 158 | 156, 157 | axdc4uz 14007 |
. . . . . . . 8
⊢ (((𝑋 × ℝ+)
∈ V ∧ 〈𝑛,
𝑚〉 ∈ (𝑋 × ℝ+)
∧ 𝐹:(ℕ ×
(𝑋 ×
ℝ+))⟶(𝒫 (𝑋 × ℝ+) ∖
{∅})) → ∃𝑔(𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = 〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) |
| 159 | 31, 39, 155, 158 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) →
∃𝑔(𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = 〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) |
| 160 | | simpl1 1192 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → 𝜑) |
| 161 | 160, 1 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → 𝐷 ∈ (CMet‘𝑋)) |
| 162 | 160, 8 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → 𝑀:ℕ⟶(Clsd‘𝐽)) |
| 163 | | simpl3 1194 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → 𝑚 ∈ ℝ+) |
| 164 | 37 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → 𝑛 ∈ 𝑋) |
| 165 | | simpr1 1195 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → 𝑔:ℕ⟶(𝑋 ×
ℝ+)) |
| 166 | | simpr2 1196 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → (𝑔‘1) = 〈𝑛, 𝑚〉) |
| 167 | | simpr3 1197 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛))) |
| 168 | | fvoveq1 7433 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑔‘(𝑛 + 1)) = (𝑔‘(𝑘 + 1))) |
| 169 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → 𝑛 = 𝑘) |
| 170 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝑔‘𝑛) = (𝑔‘𝑘)) |
| 171 | 169, 170 | oveq12d 7428 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑛𝐹(𝑔‘𝑛)) = (𝑘𝐹(𝑔‘𝑘))) |
| 172 | 168, 171 | eleq12d 2829 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)) ↔ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
| 173 | 172 | cbvralvw 3224 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)) ↔ ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) |
| 174 | 167, 173 | sylib 218 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) |
| 175 | 5, 161, 152, 162, 163, 164, 165, 166, 174 | bcthlem4 25284 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → ((𝑛(ball‘𝐷)𝑚) ∖ ∪ ran
𝑀) ≠
∅) |
| 176 | 159, 175 | exlimddv 1935 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → ((𝑛(ball‘𝐷)𝑚) ∖ ∪ ran
𝑀) ≠
∅) |
| 177 | 10 | ntrss2 23000 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ ∪ ran 𝑀 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∪ ran 𝑀) ⊆ ∪ ran
𝑀) |
| 178 | 7, 14, 177 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ((int‘𝐽)‘∪ ran 𝑀) ⊆ ∪ ran
𝑀) |
| 179 | | sstr2 3970 |
. . . . . . . . . 10
⊢ ((𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀) →
(((int‘𝐽)‘∪ ran 𝑀) ⊆ ∪ ran
𝑀 → (𝑛(ball‘𝐷)𝑚) ⊆ ∪ ran
𝑀)) |
| 180 | 178, 179 | syl5com 31 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀) → (𝑛(ball‘𝐷)𝑚) ⊆ ∪ ran
𝑀)) |
| 181 | | ssdif0 4346 |
. . . . . . . . 9
⊢ ((𝑛(ball‘𝐷)𝑚) ⊆ ∪ ran
𝑀 ↔ ((𝑛(ball‘𝐷)𝑚) ∖ ∪ ran
𝑀) =
∅) |
| 182 | 180, 181 | imbitrdi 251 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀) → ((𝑛(ball‘𝐷)𝑚) ∖ ∪ ran
𝑀) =
∅)) |
| 183 | 182 | necon3ad 2946 |
. . . . . . 7
⊢ (𝜑 → (((𝑛(ball‘𝐷)𝑚) ∖ ∪ ran
𝑀) ≠ ∅ →
¬ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀))) |
| 184 | 183 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → (((𝑛(ball‘𝐷)𝑚) ∖ ∪ ran
𝑀) ≠ ∅ →
¬ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀))) |
| 185 | 176, 184 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → ¬
(𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀)) |
| 186 | 185 | 3expa 1118 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀)) ∧ 𝑚 ∈ ℝ+)
→ ¬ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀)) |
| 187 | 186 | nrexdv 3136 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀)) → ¬
∃𝑚 ∈
ℝ+ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀)) |
| 188 | 20, 187 | pm2.65da 816 |
. 2
⊢ (𝜑 → ¬ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀)) |
| 189 | 188 | eq0rdv 4387 |
1
⊢ (𝜑 → ((int‘𝐽)‘∪ ran 𝑀) = ∅) |