Step | Hyp | Ref
| Expression |
1 | | bcthlem.4 |
. . . . . 6
β’ (π β π· β (CMetβπ)) |
2 | | cmetmet 24794 |
. . . . . 6
β’ (π· β (CMetβπ) β π· β (Metβπ)) |
3 | | metxmet 23831 |
. . . . . 6
β’ (π· β (Metβπ) β π· β (βMetβπ)) |
4 | 1, 2, 3 | 3syl 18 |
. . . . 5
β’ (π β π· β (βMetβπ)) |
5 | | bcth.2 |
. . . . . . . 8
β’ π½ = (MetOpenβπ·) |
6 | 5 | mopntop 23937 |
. . . . . . 7
β’ (π· β (βMetβπ) β π½ β Top) |
7 | 4, 6 | syl 17 |
. . . . . 6
β’ (π β π½ β Top) |
8 | | bcthlem.6 |
. . . . . . . . 9
β’ (π β π:ββΆ(Clsdβπ½)) |
9 | 8 | frnd 6722 |
. . . . . . . 8
β’ (π β ran π β (Clsdβπ½)) |
10 | | eqid 2732 |
. . . . . . . . 9
β’ βͺ π½ =
βͺ π½ |
11 | 10 | cldss2 22525 |
. . . . . . . 8
β’
(Clsdβπ½)
β π« βͺ π½ |
12 | 9, 11 | sstrdi 3993 |
. . . . . . 7
β’ (π β ran π β π« βͺ π½) |
13 | | sspwuni 5102 |
. . . . . . 7
β’ (ran
π β π« βͺ π½
β βͺ ran π β βͺ π½) |
14 | 12, 13 | sylib 217 |
. . . . . 6
β’ (π β βͺ ran π β βͺ π½) |
15 | 10 | ntropn 22544 |
. . . . . 6
β’ ((π½ β Top β§ βͺ ran π β βͺ π½) β ((intβπ½)ββͺ ran π) β π½) |
16 | 7, 14, 15 | syl2anc 584 |
. . . . 5
β’ (π β ((intβπ½)ββͺ ran π) β π½) |
17 | 4, 16 | jca 512 |
. . . 4
β’ (π β (π· β (βMetβπ) β§ ((intβπ½)ββͺ ran
π) β π½)) |
18 | 5 | mopni2 23993 |
. . . . 5
β’ ((π· β (βMetβπ) β§ ((intβπ½)ββͺ ran π) β π½ β§ π β ((intβπ½)ββͺ ran
π)) β βπ β β+
(π(ballβπ·)π) β ((intβπ½)ββͺ ran
π)) |
19 | 18 | 3expa 1118 |
. . . 4
β’ (((π· β (βMetβπ) β§ ((intβπ½)ββͺ ran π) β π½) β§ π β ((intβπ½)ββͺ ran
π)) β βπ β β+
(π(ballβπ·)π) β ((intβπ½)ββͺ ran
π)) |
20 | 17, 19 | sylan 580 |
. . 3
β’ ((π β§ π β ((intβπ½)ββͺ ran
π)) β βπ β β+
(π(ballβπ·)π) β ((intβπ½)ββͺ ran
π)) |
21 | 5 | mopnuni 23938 |
. . . . . . . . . . . 12
β’ (π· β (βMetβπ) β π = βͺ π½) |
22 | 4, 21 | syl 17 |
. . . . . . . . . . 11
β’ (π β π = βͺ π½) |
23 | 10 | topopn 22399 |
. . . . . . . . . . . 12
β’ (π½ β Top β βͺ π½
β π½) |
24 | 7, 23 | syl 17 |
. . . . . . . . . . 11
β’ (π β βͺ π½
β π½) |
25 | 22, 24 | eqeltrd 2833 |
. . . . . . . . . 10
β’ (π β π β π½) |
26 | | reex 11197 |
. . . . . . . . . . 11
β’ β
β V |
27 | | rpssre 12977 |
. . . . . . . . . . 11
β’
β+ β β |
28 | 26, 27 | ssexi 5321 |
. . . . . . . . . 10
β’
β+ β V |
29 | | xpexg 7733 |
. . . . . . . . . 10
β’ ((π β π½ β§ β+ β V) β
(π Γ
β+) β V) |
30 | 25, 28, 29 | sylancl 586 |
. . . . . . . . 9
β’ (π β (π Γ β+) β
V) |
31 | 30 | 3ad2ant1 1133 |
. . . . . . . 8
β’ ((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β (π Γ β+)
β V) |
32 | 10 | ntrss3 22555 |
. . . . . . . . . . . . 13
β’ ((π½ β Top β§ βͺ ran π β βͺ π½) β ((intβπ½)ββͺ ran π) β βͺ π½) |
33 | 7, 14, 32 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (π β ((intβπ½)ββͺ ran π) β βͺ π½) |
34 | 33, 22 | sseqtrrd 4022 |
. . . . . . . . . . 11
β’ (π β ((intβπ½)ββͺ ran π) β π) |
35 | 34 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β
((intβπ½)ββͺ ran π) β π) |
36 | | simp2 1137 |
. . . . . . . . . 10
β’ ((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β π β ((intβπ½)ββͺ ran π)) |
37 | 35, 36 | sseldd 3982 |
. . . . . . . . 9
β’ ((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β π β π) |
38 | | simp3 1138 |
. . . . . . . . 9
β’ ((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β π β
β+) |
39 | 37, 38 | opelxpd 5713 |
. . . . . . . 8
β’ ((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β
β¨π, πβ© β (π Γ
β+)) |
40 | | opabssxp 5766 |
. . . . . . . . . . . . 13
β’
{β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β (π Γ
β+) |
41 | | elpw2g 5343 |
. . . . . . . . . . . . . . 15
β’ ((π Γ β+)
β V β ({β¨π₯,
πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β π« (π Γ β+) β
{β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β (π Γ
β+))) |
42 | 30, 41 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β ({β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β π« (π Γ β+) β
{β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β (π Γ
β+))) |
43 | 42 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
({β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β π« (π Γ β+) β
{β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β (π Γ
β+))) |
44 | 40, 43 | mpbiri 257 |
. . . . . . . . . . . 12
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
{β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β π« (π Γ
β+)) |
45 | | bcthlem5.7 |
. . . . . . . . . . . . . . . 16
β’ (π β βπ β β ((intβπ½)β(πβπ)) = β
) |
46 | | simpl 483 |
. . . . . . . . . . . . . . . 16
β’ ((π β β β§ π§ β (π Γ β+)) β π β
β) |
47 | | rspa 3245 |
. . . . . . . . . . . . . . . 16
β’
((βπ β
β ((intβπ½)β(πβπ)) = β
β§ π β β) β ((intβπ½)β(πβπ)) = β
) |
48 | 45, 46, 47 | syl2an 596 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
((intβπ½)β(πβπ)) = β
) |
49 | | ssdif0 4362 |
. . . . . . . . . . . . . . . . 17
β’
(((ballβπ·)βπ§) β (πβπ) β (((ballβπ·)βπ§) β (πβπ)) = β
) |
50 | | 1st2nd2 8010 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π§ β (π Γ β+) β π§ = β¨(1st
βπ§), (2nd
βπ§)β©) |
51 | 50 | ad2antll 727 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β π§ = β¨(1st
βπ§), (2nd
βπ§)β©) |
52 | 51 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
((ballβπ·)βπ§) = ((ballβπ·)ββ¨(1st
βπ§), (2nd
βπ§)β©)) |
53 | | df-ov 7408 |
. . . . . . . . . . . . . . . . . . . 20
β’
((1st βπ§)(ballβπ·)(2nd βπ§)) = ((ballβπ·)ββ¨(1st βπ§), (2nd βπ§)β©) |
54 | 52, 53 | eqtr4di 2790 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
((ballβπ·)βπ§) = ((1st
βπ§)(ballβπ·)(2nd βπ§))) |
55 | 4 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β π· β (βMetβπ)) |
56 | | xp1st 8003 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π§ β (π Γ β+) β
(1st βπ§)
β π) |
57 | 56 | ad2antll 727 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(1st βπ§)
β π) |
58 | | xp2nd 8004 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π§ β (π Γ β+) β
(2nd βπ§)
β β+) |
59 | 58 | ad2antll 727 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(2nd βπ§)
β β+) |
60 | | bln0 23912 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π· β (βMetβπ) β§ (1st
βπ§) β π β§ (2nd
βπ§) β
β+) β ((1st βπ§)(ballβπ·)(2nd βπ§)) β β
) |
61 | 55, 57, 59, 60 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
((1st βπ§)(ballβπ·)(2nd βπ§)) β β
) |
62 | 54, 61 | eqnetrd 3008 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
((ballβπ·)βπ§) β β
) |
63 | 7 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β π½ β Top) |
64 | | ffvelcdm 7080 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π:ββΆ(Clsdβπ½) β§ π β β) β (πβπ) β (Clsdβπ½)) |
65 | 8, 46, 64 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(πβπ) β (Clsdβπ½)) |
66 | 10 | cldss 22524 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((πβπ) β (Clsdβπ½) β (πβπ) β βͺ π½) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(πβπ) β βͺ π½) |
68 | 59 | rpxrd 13013 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(2nd βπ§)
β β*) |
69 | 5 | blopn 24000 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π· β (βMetβπ) β§ (1st
βπ§) β π β§ (2nd
βπ§) β
β*) β ((1st βπ§)(ballβπ·)(2nd βπ§)) β π½) |
70 | 55, 57, 68, 69 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
((1st βπ§)(ballβπ·)(2nd βπ§)) β π½) |
71 | 54, 70 | eqeltrd 2833 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
((ballβπ·)βπ§) β π½) |
72 | 10 | ssntr 22553 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π½ β Top β§ (πβπ) β βͺ π½) β§ (((ballβπ·)βπ§) β π½ β§ ((ballβπ·)βπ§) β (πβπ))) β ((ballβπ·)βπ§) β ((intβπ½)β(πβπ))) |
73 | 72 | expr 457 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π½ β Top β§ (πβπ) β βͺ π½) β§ ((ballβπ·)βπ§) β π½) β (((ballβπ·)βπ§) β (πβπ) β ((ballβπ·)βπ§) β ((intβπ½)β(πβπ)))) |
74 | 63, 67, 71, 73 | syl21anc 836 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(((ballβπ·)βπ§) β (πβπ) β ((ballβπ·)βπ§) β ((intβπ½)β(πβπ)))) |
75 | | ssn0 4399 |
. . . . . . . . . . . . . . . . . . 19
β’
((((ballβπ·)βπ§) β ((intβπ½)β(πβπ)) β§ ((ballβπ·)βπ§) β β
) β ((intβπ½)β(πβπ)) β β
) |
76 | 75 | expcom 414 |
. . . . . . . . . . . . . . . . . 18
β’
(((ballβπ·)βπ§) β β
β (((ballβπ·)βπ§) β ((intβπ½)β(πβπ)) β ((intβπ½)β(πβπ)) β β
)) |
77 | 62, 74, 76 | sylsyld 61 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(((ballβπ·)βπ§) β (πβπ) β ((intβπ½)β(πβπ)) β β
)) |
78 | 49, 77 | biimtrrid 242 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
((((ballβπ·)βπ§) β (πβπ)) = β
β ((intβπ½)β(πβπ)) β β
)) |
79 | 78 | necon2d 2963 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(((intβπ½)β(πβπ)) = β
β (((ballβπ·)βπ§) β (πβπ)) β β
)) |
80 | 48, 79 | mpd 15 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(((ballβπ·)βπ§) β (πβπ)) β β
) |
81 | | n0 4345 |
. . . . . . . . . . . . . . 15
β’
((((ballβπ·)βπ§) β (πβπ)) β β
β βπ₯ π₯ β (((ballβπ·)βπ§) β (πβπ))) |
82 | 4 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ π§ β (π Γ β+)) β§ π₯ β (((ballβπ·)βπ§) β (πβπ))) β π· β (βMetβπ)) |
83 | 10 | difopn 22529 |
. . . . . . . . . . . . . . . . . . . . 21
β’
((((ballβπ·)βπ§) β π½ β§ (πβπ) β (Clsdβπ½)) β (((ballβπ·)βπ§) β (πβπ)) β π½) |
84 | 71, 65, 83 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(((ballβπ·)βπ§) β (πβπ)) β π½) |
85 | 84 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ π§ β (π Γ β+)) β§ π₯ β (((ballβπ·)βπ§) β (πβπ))) β (((ballβπ·)βπ§) β (πβπ)) β π½) |
86 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ π§ β (π Γ β+)) β§ π₯ β (((ballβπ·)βπ§) β (πβπ))) β π₯ β (((ballβπ·)βπ§) β (πβπ))) |
87 | | simp2l 1199 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π β β β§ π§ β (π Γ β+)) β§ π₯ β (((ballβπ·)βπ§) β (πβπ))) β π β β) |
88 | | nnrp 12981 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β β β π β
β+) |
89 | 88 | rpreccld 13022 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β β β (1 /
π) β
β+) |
90 | 87, 89 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ π§ β (π Γ β+)) β§ π₯ β (((ballβπ·)βπ§) β (πβπ))) β (1 / π) β
β+) |
91 | 5 | mopni3 23994 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π· β (βMetβπ) β§ (((ballβπ·)βπ§) β (πβπ)) β π½ β§ π₯ β (((ballβπ·)βπ§) β (πβπ))) β§ (1 / π) β β+) β
βπ β
β+ (π <
(1 / π) β§ (π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ)))) |
92 | 82, 85, 86, 90, 91 | syl31anc 1373 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ (π β β β§ π§ β (π Γ β+)) β§ π₯ β (((ballβπ·)βπ§) β (πβπ))) β βπ β β+ (π < (1 / π) β§ (π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ)))) |
93 | | simp1 1136 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ π§ β (π Γ β+)) β§ π₯ β (((ballβπ·)βπ§) β (πβπ))) β π) |
94 | | elssuni 4940 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
(((ballβπ·)βπ§) β π½ β ((ballβπ·)βπ§) β βͺ π½) |
95 | 71, 94 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
((ballβπ·)βπ§) β βͺ π½) |
96 | 22 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β π = βͺ
π½) |
97 | 95, 96 | sseqtrrd 4022 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
((ballβπ·)βπ§) β π) |
98 | 97 | ssdifssd 4141 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(((ballβπ·)βπ§) β (πβπ)) β π) |
99 | 98 | sseld 3980 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(π₯ β
(((ballβπ·)βπ§) β (πβπ)) β π₯ β π)) |
100 | 99 | 3impia 1117 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ π§ β (π Γ β+)) β§ π₯ β (((ballβπ·)βπ§) β (πβπ))) β π₯ β π) |
101 | | simp2 1137 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ π§ β (π Γ β+)) β§ π₯ β (((ballβπ·)βπ§) β (πβπ))) β (π β β β§ π§ β (π Γ
β+))) |
102 | | rphalfcl 12997 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β β+
β (π / 2) β
β+) |
103 | | rphalflt 12999 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β β+
β (π / 2) < π) |
104 | | breq1 5150 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π = (π / 2) β (π < π β (π / 2) < π)) |
105 | 104 | rspcev 3612 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π / 2) β β+
β§ (π / 2) < π) β βπ β β+
π < π) |
106 | 102, 103,
105 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β β+
β βπ β
β+ π <
π) |
107 | 106 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ π β β+)
β§ (π < (1 / π) β§ (π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ)))) β βπ β β+ π < π) |
108 | | df-rex 3071 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(βπ β
β+ π <
π β βπ(π β β+ β§ π < π)) |
109 | | simpr3 1196 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β π β
β+) |
110 | 109 | rpred 13012 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β π β
β) |
111 | | simpr1 1194 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β π β
β+) |
112 | 111 | rpred 13012 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β π β
β) |
113 | | simplrl 775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β π β
β) |
114 | 113 | nnrecred 12259 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β (1 /
π) β
β) |
115 | | simpr2 1195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β π < π) |
116 | | lttr 11286 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π β β β§ π β β β§ (1 / π) β β) β ((π < π β§ π < (1 / π)) β π < (1 / π))) |
117 | 116 | expdimp 453 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π β β β§ π β β β§ (1 / π) β β) β§ π < π) β (π < (1 / π) β π < (1 / π))) |
118 | 110, 112,
114, 115, 117 | syl31anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β (π < (1 / π) β π < (1 / π))) |
119 | 4 | anim1i 615 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β§ π₯ β π) β (π· β (βMetβπ) β§ π₯ β π)) |
120 | 119 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β
(π· β
(βMetβπ) β§
π₯ β π)) |
121 | | rpxr 12979 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π β β+
β π β
β*) |
122 | | rpxr 12979 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π β β+
β π β
β*) |
123 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π < π β π < π) |
124 | 121, 122,
123 | 3anim123i 1151 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β β+
β§ π β
β+ β§ π
< π) β (π β β*
β§ π β
β* β§ π
< π)) |
125 | 124 | 3coml 1127 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π β β+
β§ π < π β§ π β β+) β (π β β*
β§ π β
β* β§ π
< π)) |
126 | 5 | blsscls 24007 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (((π· β (βMetβπ) β§ π₯ β π) β§ (π β β* β§ π β β*
β§ π < π)) β ((clsβπ½)β(π₯(ballβπ·)π)) β (π₯(ballβπ·)π)) |
127 | 120, 125,
126 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β
((clsβπ½)β(π₯(ballβπ·)π)) β (π₯(ballβπ·)π)) |
128 | | sstr2 3988 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’
(((clsβπ½)β(π₯(ballβπ·)π)) β (π₯(ballβπ·)π) β ((π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ)) β ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))) |
129 | 127, 128 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β ((π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ)) β ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))) |
130 | 118, 129 | anim12d 609 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β ((π < (1 / π) β§ (π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ))) β (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))) |
131 | | simpllr 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β π₯ β π) |
132 | 131, 109 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β (π₯ β π β§ π β
β+)) |
133 | 130, 132 | jctild 526 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ ((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ (π β β+
β§ π < π β§ π β β+)) β ((π < (1 / π) β§ (π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ))) β ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))))) |
134 | 133 | 3exp2 1354 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β
(π β
β+ β (π < π β (π β β+ β ((π < (1 / π) β§ (π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ))) β ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))))))) |
135 | 134 | com35 98 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β
(π β
β+ β ((π < (1 / π) β§ (π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ))) β (π β β+ β (π < π β ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))))))) |
136 | 135 | imp5d 440 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ π β β+)
β§ (π < (1 / π) β§ (π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ)))) β ((π β β+ β§ π < π) β ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))))) |
137 | 136 | eximdv 1920 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
(((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ π β β+)
β§ (π < (1 / π) β§ (π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ)))) β (βπ(π β β+ β§ π < π) β βπ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))))) |
138 | 108, 137 | biimtrid 241 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ π β β+)
β§ (π < (1 / π) β§ (π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ)))) β (βπ β β+ π < π β βπ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))))) |
139 | 107, 138 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β§ π β β+)
β§ (π < (1 / π) β§ (π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ)))) β βπ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))) |
140 | 139 | rexlimdva2 3157 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π₯ β π) β§ (π β β β§ π§ β (π Γ β+))) β
(βπ β
β+ (π <
(1 / π) β§ (π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ))) β βπ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))))) |
141 | 93, 100, 101, 140 | syl21anc 836 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ (π β β β§ π§ β (π Γ β+)) β§ π₯ β (((ballβπ·)βπ§) β (πβπ))) β (βπ β β+ (π < (1 / π) β§ (π₯(ballβπ·)π) β (((ballβπ·)βπ§) β (πβπ))) β βπ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))))) |
142 | 92, 141 | mpd 15 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ (π β β β§ π§ β (π Γ β+)) β§ π₯ β (((ballβπ·)βπ§) β (πβπ))) β βπ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))) |
143 | 142 | 3expia 1121 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(π₯ β
(((ballβπ·)βπ§) β (πβπ)) β βπ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))))) |
144 | 143 | eximdv 1920 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
(βπ₯ π₯ β (((ballβπ·)βπ§) β (πβπ)) β βπ₯βπ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))))) |
145 | 81, 144 | biimtrid 241 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
((((ballβπ·)βπ§) β (πβπ)) β β
β βπ₯βπ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ)))))) |
146 | 80, 145 | mpd 15 |
. . . . . . . . . . . . 13
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
βπ₯βπ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))) |
147 | | opabn0 5552 |
. . . . . . . . . . . . 13
β’
({β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β β
β βπ₯βπ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))) |
148 | 146, 147 | sylibr 233 |
. . . . . . . . . . . 12
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
{β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β β
) |
149 | | eldifsn 4789 |
. . . . . . . . . . . 12
β’
({β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β (π« (π Γ β+) β
{β
}) β ({β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β π« (π Γ β+) β§
{β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β β
)) |
150 | 44, 148, 149 | sylanbrc 583 |
. . . . . . . . . . 11
β’ ((π β§ (π β β β§ π§ β (π Γ β+))) β
{β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β (π« (π Γ β+) β
{β
})) |
151 | 150 | ralrimivva 3200 |
. . . . . . . . . 10
β’ (π β βπ β β βπ§ β (π Γ β+){β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β (π« (π Γ β+) β
{β
})) |
152 | | bcthlem.5 |
. . . . . . . . . . 11
β’ πΉ = (π β β, π§ β (π Γ β+) β¦
{β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))}) |
153 | 152 | fmpo 8050 |
. . . . . . . . . 10
β’
(βπ β
β βπ§ β
(π Γ
β+){β¨π₯, πβ© β£ ((π₯ β π β§ π β β+) β§ (π < (1 / π) β§ ((clsβπ½)β(π₯(ballβπ·)π)) β (((ballβπ·)βπ§) β (πβπ))))} β (π« (π Γ β+) β
{β
}) β πΉ:(β Γ (π Γ
β+))βΆ(π« (π Γ β+) β
{β
})) |
154 | 151, 153 | sylib 217 |
. . . . . . . . 9
β’ (π β πΉ:(β Γ (π Γ
β+))βΆ(π« (π Γ β+) β
{β
})) |
155 | 154 | 3ad2ant1 1133 |
. . . . . . . 8
β’ ((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β πΉ:(β Γ (π Γ
β+))βΆ(π« (π Γ β+) β
{β
})) |
156 | | 1z 12588 |
. . . . . . . . 9
β’ 1 β
β€ |
157 | | nnuz 12861 |
. . . . . . . . 9
β’ β =
(β€β₯β1) |
158 | 156, 157 | axdc4uz 13945 |
. . . . . . . 8
β’ (((π Γ β+)
β V β§ β¨π,
πβ© β (π Γ β+)
β§ πΉ:(β Γ
(π Γ
β+))βΆ(π« (π Γ β+) β
{β
})) β βπ(π:ββΆ(π Γ β+) β§ (πβ1) = β¨π, πβ© β§ βπ β β (πβ(π + 1)) β (ππΉ(πβπ)))) |
159 | 31, 39, 155, 158 | syl3anc 1371 |
. . . . . . 7
β’ ((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β
βπ(π:ββΆ(π Γ β+) β§ (πβ1) = β¨π, πβ© β§ βπ β β (πβ(π + 1)) β (ππΉ(πβπ)))) |
160 | | simpl1 1191 |
. . . . . . . . 9
β’ (((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β§ (π:ββΆ(π Γ β+)
β§ (πβ1) =
β¨π, πβ© β§ βπ β β (πβ(π + 1)) β (ππΉ(πβπ)))) β π) |
161 | 160, 1 | syl 17 |
. . . . . . . 8
β’ (((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β§ (π:ββΆ(π Γ β+)
β§ (πβ1) =
β¨π, πβ© β§ βπ β β (πβ(π + 1)) β (ππΉ(πβπ)))) β π· β (CMetβπ)) |
162 | 160, 8 | syl 17 |
. . . . . . . 8
β’ (((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β§ (π:ββΆ(π Γ β+)
β§ (πβ1) =
β¨π, πβ© β§ βπ β β (πβ(π + 1)) β (ππΉ(πβπ)))) β π:ββΆ(Clsdβπ½)) |
163 | | simpl3 1193 |
. . . . . . . 8
β’ (((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β§ (π:ββΆ(π Γ β+)
β§ (πβ1) =
β¨π, πβ© β§ βπ β β (πβ(π + 1)) β (ππΉ(πβπ)))) β π β β+) |
164 | 37 | adantr 481 |
. . . . . . . 8
β’ (((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β§ (π:ββΆ(π Γ β+)
β§ (πβ1) =
β¨π, πβ© β§ βπ β β (πβ(π + 1)) β (ππΉ(πβπ)))) β π β π) |
165 | | simpr1 1194 |
. . . . . . . 8
β’ (((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β§ (π:ββΆ(π Γ β+)
β§ (πβ1) =
β¨π, πβ© β§ βπ β β (πβ(π + 1)) β (ππΉ(πβπ)))) β π:ββΆ(π Γ
β+)) |
166 | | simpr2 1195 |
. . . . . . . 8
β’ (((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β§ (π:ββΆ(π Γ β+)
β§ (πβ1) =
β¨π, πβ© β§ βπ β β (πβ(π + 1)) β (ππΉ(πβπ)))) β (πβ1) = β¨π, πβ©) |
167 | | simpr3 1196 |
. . . . . . . . 9
β’ (((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β§ (π:ββΆ(π Γ β+)
β§ (πβ1) =
β¨π, πβ© β§ βπ β β (πβ(π + 1)) β (ππΉ(πβπ)))) β βπ β β (πβ(π + 1)) β (ππΉ(πβπ))) |
168 | | fvoveq1 7428 |
. . . . . . . . . . 11
β’ (π = π β (πβ(π + 1)) = (πβ(π + 1))) |
169 | | id 22 |
. . . . . . . . . . . 12
β’ (π = π β π = π) |
170 | | fveq2 6888 |
. . . . . . . . . . . 12
β’ (π = π β (πβπ) = (πβπ)) |
171 | 169, 170 | oveq12d 7423 |
. . . . . . . . . . 11
β’ (π = π β (ππΉ(πβπ)) = (ππΉ(πβπ))) |
172 | 168, 171 | eleq12d 2827 |
. . . . . . . . . 10
β’ (π = π β ((πβ(π + 1)) β (ππΉ(πβπ)) β (πβ(π + 1)) β (ππΉ(πβπ)))) |
173 | 172 | cbvralvw 3234 |
. . . . . . . . 9
β’
(βπ β
β (πβ(π + 1)) β (ππΉ(πβπ)) β βπ β β (πβ(π + 1)) β (ππΉ(πβπ))) |
174 | 167, 173 | sylib 217 |
. . . . . . . 8
β’ (((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β§ (π:ββΆ(π Γ β+)
β§ (πβ1) =
β¨π, πβ© β§ βπ β β (πβ(π + 1)) β (ππΉ(πβπ)))) β βπ β β (πβ(π + 1)) β (ππΉ(πβπ))) |
175 | 5, 161, 152, 162, 163, 164, 165, 166, 174 | bcthlem4 24835 |
. . . . . . 7
β’ (((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β§ (π:ββΆ(π Γ β+)
β§ (πβ1) =
β¨π, πβ© β§ βπ β β (πβ(π + 1)) β (ππΉ(πβπ)))) β ((π(ballβπ·)π) β βͺ ran
π) β
β
) |
176 | 159, 175 | exlimddv 1938 |
. . . . . 6
β’ ((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β ((π(ballβπ·)π) β βͺ ran
π) β
β
) |
177 | 10 | ntrss2 22552 |
. . . . . . . . . . 11
β’ ((π½ β Top β§ βͺ ran π β βͺ π½) β ((intβπ½)ββͺ ran π) β βͺ ran
π) |
178 | 7, 14, 177 | syl2anc 584 |
. . . . . . . . . 10
β’ (π β ((intβπ½)ββͺ ran π) β βͺ ran
π) |
179 | | sstr2 3988 |
. . . . . . . . . 10
β’ ((π(ballβπ·)π) β ((intβπ½)ββͺ ran
π) β
(((intβπ½)ββͺ ran π) β βͺ ran
π β (π(ballβπ·)π) β βͺ ran
π)) |
180 | 178, 179 | syl5com 31 |
. . . . . . . . 9
β’ (π β ((π(ballβπ·)π) β ((intβπ½)ββͺ ran
π) β (π(ballβπ·)π) β βͺ ran
π)) |
181 | | ssdif0 4362 |
. . . . . . . . 9
β’ ((π(ballβπ·)π) β βͺ ran
π β ((π(ballβπ·)π) β βͺ ran
π) =
β
) |
182 | 180, 181 | imbitrdi 250 |
. . . . . . . 8
β’ (π β ((π(ballβπ·)π) β ((intβπ½)ββͺ ran
π) β ((π(ballβπ·)π) β βͺ ran
π) =
β
)) |
183 | 182 | necon3ad 2953 |
. . . . . . 7
β’ (π β (((π(ballβπ·)π) β βͺ ran
π) β β
β
Β¬ (π(ballβπ·)π) β ((intβπ½)ββͺ ran
π))) |
184 | 183 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β (((π(ballβπ·)π) β βͺ ran
π) β β
β
Β¬ (π(ballβπ·)π) β ((intβπ½)ββͺ ran
π))) |
185 | 176, 184 | mpd 15 |
. . . . 5
β’ ((π β§ π β ((intβπ½)ββͺ ran
π) β§ π β β+) β Β¬
(π(ballβπ·)π) β ((intβπ½)ββͺ ran
π)) |
186 | 185 | 3expa 1118 |
. . . 4
β’ (((π β§ π β ((intβπ½)ββͺ ran
π)) β§ π β β+)
β Β¬ (π(ballβπ·)π) β ((intβπ½)ββͺ ran
π)) |
187 | 186 | nrexdv 3149 |
. . 3
β’ ((π β§ π β ((intβπ½)ββͺ ran
π)) β Β¬
βπ β
β+ (π(ballβπ·)π) β ((intβπ½)ββͺ ran
π)) |
188 | 20, 187 | pm2.65da 815 |
. 2
β’ (π β Β¬ π β ((intβπ½)ββͺ ran
π)) |
189 | 188 | eq0rdv 4403 |
1
β’ (π β ((intβπ½)ββͺ ran π) = β
) |