Step | Hyp | Ref
| Expression |
1 | | bcthlem.4 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
2 | | cmetmet 23461 |
. . . . . 6
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
3 | | metxmet 22516 |
. . . . . 6
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
4 | 1, 2, 3 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
5 | | bcth.2 |
. . . . . . . 8
⊢ 𝐽 = (MetOpen‘𝐷) |
6 | 5 | mopntop 22622 |
. . . . . . 7
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
7 | 4, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ Top) |
8 | | bcthlem.6 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀:ℕ⟶(Clsd‘𝐽)) |
9 | 8 | frnd 6289 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑀 ⊆ (Clsd‘𝐽)) |
10 | | eqid 2825 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
11 | 10 | cldss2 21212 |
. . . . . . . 8
⊢
(Clsd‘𝐽)
⊆ 𝒫 ∪ 𝐽 |
12 | 9, 11 | syl6ss 3839 |
. . . . . . 7
⊢ (𝜑 → ran 𝑀 ⊆ 𝒫 ∪ 𝐽) |
13 | | sspwuni 4834 |
. . . . . . 7
⊢ (ran
𝑀 ⊆ 𝒫 ∪ 𝐽
↔ ∪ ran 𝑀 ⊆ ∪ 𝐽) |
14 | 12, 13 | sylib 210 |
. . . . . 6
⊢ (𝜑 → ∪ ran 𝑀 ⊆ ∪ 𝐽) |
15 | 10 | ntropn 21231 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ ∪ ran 𝑀 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∪ ran 𝑀) ∈ 𝐽) |
16 | 7, 14, 15 | syl2anc 579 |
. . . . 5
⊢ (𝜑 → ((int‘𝐽)‘∪ ran 𝑀) ∈ 𝐽) |
17 | 4, 16 | jca 507 |
. . . 4
⊢ (𝜑 → (𝐷 ∈ (∞Met‘𝑋) ∧ ((int‘𝐽)‘∪ ran
𝑀) ∈ 𝐽)) |
18 | 5 | mopni2 22675 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((int‘𝐽)‘∪ ran 𝑀) ∈ 𝐽 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀)) → ∃𝑚 ∈ ℝ+
(𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀)) |
19 | 18 | 3expa 1151 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ ((int‘𝐽)‘∪ ran 𝑀) ∈ 𝐽) ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀)) → ∃𝑚 ∈ ℝ+
(𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀)) |
20 | 17, 19 | sylan 575 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀)) → ∃𝑚 ∈ ℝ+
(𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀)) |
21 | 5 | mopnuni 22623 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
22 | 4, 21 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
23 | 10 | topopn 21088 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ 𝐽) |
24 | 7, 23 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ 𝐽
∈ 𝐽) |
25 | 22, 24 | eqeltrd 2906 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
26 | | reex 10350 |
. . . . . . . . . . 11
⊢ ℝ
∈ V |
27 | | rpssre 12126 |
. . . . . . . . . . 11
⊢
ℝ+ ⊆ ℝ |
28 | 26, 27 | ssexi 5030 |
. . . . . . . . . 10
⊢
ℝ+ ∈ V |
29 | | xpexg 7225 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐽 ∧ ℝ+ ∈ V) →
(𝑋 ×
ℝ+) ∈ V) |
30 | 25, 28, 29 | sylancl 580 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 × ℝ+) ∈
V) |
31 | 30 | 3ad2ant1 1167 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → (𝑋 × ℝ+)
∈ V) |
32 | 10 | ntrss3 21242 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ ∪ ran 𝑀 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∪ ran 𝑀) ⊆ ∪ 𝐽) |
33 | 7, 14, 32 | syl2anc 579 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((int‘𝐽)‘∪ ran 𝑀) ⊆ ∪ 𝐽) |
34 | 33, 22 | sseqtr4d 3867 |
. . . . . . . . . . 11
⊢ (𝜑 → ((int‘𝐽)‘∪ ran 𝑀) ⊆ 𝑋) |
35 | 34 | 3ad2ant1 1167 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) →
((int‘𝐽)‘∪ ran 𝑀) ⊆ 𝑋) |
36 | | simp2 1171 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → 𝑛 ∈ ((int‘𝐽)‘∪ ran 𝑀)) |
37 | 35, 36 | sseldd 3828 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → 𝑛 ∈ 𝑋) |
38 | | simp3 1172 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → 𝑚 ∈
ℝ+) |
39 | | opelxpi 5383 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+) →
〈𝑛, 𝑚〉 ∈ (𝑋 ×
ℝ+)) |
40 | 37, 38, 39 | syl2anc 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) →
〈𝑛, 𝑚〉 ∈ (𝑋 ×
ℝ+)) |
41 | | opabssxp 5432 |
. . . . . . . . . . . . 13
⊢
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ⊆ (𝑋 ×
ℝ+) |
42 | | elpw2g 5051 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 × ℝ+)
∈ V → ({〈𝑥,
𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ 𝒫 (𝑋 × ℝ+) ↔
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ⊆ (𝑋 ×
ℝ+))) |
43 | 30, 42 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ({〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ 𝒫 (𝑋 × ℝ+) ↔
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ⊆ (𝑋 ×
ℝ+))) |
44 | 43 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
({〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ 𝒫 (𝑋 × ℝ+) ↔
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ⊆ (𝑋 ×
ℝ+))) |
45 | 41, 44 | mpbiri 250 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ 𝒫 (𝑋 ×
ℝ+)) |
46 | | bcthlem5.7 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀‘𝑘)) = ∅) |
47 | | simpl 476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) → 𝑘 ∈
ℕ) |
48 | | rspa 3139 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑘 ∈
ℕ ((int‘𝐽)‘(𝑀‘𝑘)) = ∅ ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘(𝑀‘𝑘)) = ∅) |
49 | 46, 47, 48 | syl2an 589 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((int‘𝐽)‘(𝑀‘𝑘)) = ∅) |
50 | | ssdif0 4173 |
. . . . . . . . . . . . . . . . 17
⊢
(((ball‘𝐷)‘𝑧) ⊆ (𝑀‘𝑘) ↔ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) = ∅) |
51 | | 1st2nd2 7472 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ (𝑋 × ℝ+) → 𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉) |
52 | 51 | ad2antll 720 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → 𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉) |
53 | 52 | fveq2d 6441 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((ball‘𝐷)‘𝑧) = ((ball‘𝐷)‘〈(1st
‘𝑧), (2nd
‘𝑧)〉)) |
54 | | df-ov 6913 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑧)(ball‘𝐷)(2nd ‘𝑧)) = ((ball‘𝐷)‘〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
55 | 53, 54 | syl6eqr 2879 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((ball‘𝐷)‘𝑧) = ((1st
‘𝑧)(ball‘𝐷)(2nd ‘𝑧))) |
56 | 4 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → 𝐷 ∈ (∞Met‘𝑋)) |
57 | | xp1st 7465 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ (𝑋 × ℝ+) →
(1st ‘𝑧)
∈ 𝑋) |
58 | 57 | ad2antll 720 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(1st ‘𝑧)
∈ 𝑋) |
59 | | xp2nd 7466 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ (𝑋 × ℝ+) →
(2nd ‘𝑧)
∈ ℝ+) |
60 | 59 | ad2antll 720 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(2nd ‘𝑧)
∈ ℝ+) |
61 | | bln0 22597 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘𝑧) ∈ 𝑋 ∧ (2nd
‘𝑧) ∈
ℝ+) → ((1st ‘𝑧)(ball‘𝐷)(2nd ‘𝑧)) ≠ ∅) |
62 | 56, 58, 60, 61 | syl3anc 1494 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((1st ‘𝑧)(ball‘𝐷)(2nd ‘𝑧)) ≠ ∅) |
63 | 55, 62 | eqnetrd 3066 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((ball‘𝐷)‘𝑧) ≠ ∅) |
64 | 7 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → 𝐽 ∈ Top) |
65 | | ffvelrn 6611 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀:ℕ⟶(Clsd‘𝐽) ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ∈ (Clsd‘𝐽)) |
66 | 8, 47, 65 | syl2an 589 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝑀‘𝑘) ∈ (Clsd‘𝐽)) |
67 | 10 | cldss 21211 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀‘𝑘) ∈ (Clsd‘𝐽) → (𝑀‘𝑘) ⊆ ∪ 𝐽) |
68 | 66, 67 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝑀‘𝑘) ⊆ ∪ 𝐽) |
69 | 60 | rpxrd 12164 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(2nd ‘𝑧)
∈ ℝ*) |
70 | 5 | blopn 22682 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘𝑧) ∈ 𝑋 ∧ (2nd
‘𝑧) ∈
ℝ*) → ((1st ‘𝑧)(ball‘𝐷)(2nd ‘𝑧)) ∈ 𝐽) |
71 | 56, 58, 69, 70 | syl3anc 1494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((1st ‘𝑧)(ball‘𝐷)(2nd ‘𝑧)) ∈ 𝐽) |
72 | 55, 71 | eqeltrd 2906 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((ball‘𝐷)‘𝑧) ∈ 𝐽) |
73 | 10 | ssntr 21240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ Top ∧ (𝑀‘𝑘) ⊆ ∪ 𝐽) ∧ (((ball‘𝐷)‘𝑧) ∈ 𝐽 ∧ ((ball‘𝐷)‘𝑧) ⊆ (𝑀‘𝑘))) → ((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀‘𝑘))) |
74 | 73 | expr 450 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ Top ∧ (𝑀‘𝑘) ⊆ ∪ 𝐽) ∧ ((ball‘𝐷)‘𝑧) ∈ 𝐽) → (((ball‘𝐷)‘𝑧) ⊆ (𝑀‘𝑘) → ((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀‘𝑘)))) |
75 | 64, 68, 72, 74 | syl21anc 871 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(((ball‘𝐷)‘𝑧) ⊆ (𝑀‘𝑘) → ((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀‘𝑘)))) |
76 | | ssn0 4203 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀‘𝑘)) ∧ ((ball‘𝐷)‘𝑧) ≠ ∅) → ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅) |
77 | 76 | expcom 404 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ball‘𝐷)‘𝑧) ≠ ∅ → (((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀‘𝑘)) → ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅)) |
78 | 63, 75, 77 | sylsyld 61 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(((ball‘𝐷)‘𝑧) ⊆ (𝑀‘𝑘) → ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅)) |
79 | 50, 78 | syl5bir 235 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) = ∅ → ((int‘𝐽)‘(𝑀‘𝑘)) ≠ ∅)) |
80 | 79 | necon2d 3022 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(((int‘𝐽)‘(𝑀‘𝑘)) = ∅ → (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ≠ ∅)) |
81 | 49, 80 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ≠ ∅) |
82 | | n0 4162 |
. . . . . . . . . . . . . . 15
⊢
((((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) |
83 | 4 | 3ad2ant1 1167 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → 𝐷 ∈ (∞Met‘𝑋)) |
84 | 10 | difopn 21216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((ball‘𝐷)‘𝑧) ∈ 𝐽 ∧ (𝑀‘𝑘) ∈ (Clsd‘𝐽)) → (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ∈ 𝐽) |
85 | 72, 66, 84 | syl2anc 579 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ∈ 𝐽) |
86 | 85 | 3adant3 1166 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ∈ 𝐽) |
87 | | simp3 1172 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) |
88 | | simp2l 1260 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → 𝑘 ∈ ℕ) |
89 | | nnrp 12132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
90 | 89 | rpreccld 12173 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ+) |
91 | 88, 90 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → (1 / 𝑘) ∈
ℝ+) |
92 | 5 | mopni3 22676 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ∈ 𝐽 ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) ∧ (1 / 𝑘) ∈ ℝ+) →
∃𝑛 ∈
ℝ+ (𝑛 <
(1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) |
93 | 83, 86, 87, 91, 92 | syl31anc 1496 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → ∃𝑛 ∈ ℝ+ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) |
94 | | simp1 1170 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → 𝜑) |
95 | | elssuni 4691 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((ball‘𝐷)‘𝑧) ∈ 𝐽 → ((ball‘𝐷)‘𝑧) ⊆ ∪ 𝐽) |
96 | 72, 95 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((ball‘𝐷)‘𝑧) ⊆ ∪ 𝐽) |
97 | 22 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → 𝑋 = ∪
𝐽) |
98 | 96, 97 | sseqtr4d 3867 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((ball‘𝐷)‘𝑧) ⊆ 𝑋) |
99 | 98 | ssdifssd 3977 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ⊆ 𝑋) |
100 | 99 | sseld 3826 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝑥 ∈
(((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) → 𝑥 ∈ 𝑋)) |
101 | 100 | 3impia 1149 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → 𝑥 ∈ 𝑋) |
102 | | simp2 1171 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 ×
ℝ+))) |
103 | | rphalfcl 12148 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ℝ+
→ (𝑛 / 2) ∈
ℝ+) |
104 | | rphalflt 12150 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ℝ+
→ (𝑛 / 2) < 𝑛) |
105 | | breq1 4878 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑟 = (𝑛 / 2) → (𝑟 < 𝑛 ↔ (𝑛 / 2) < 𝑛)) |
106 | 105 | rspcev 3526 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 / 2) ∈ ℝ+
∧ (𝑛 / 2) < 𝑛) → ∃𝑟 ∈ ℝ+
𝑟 < 𝑛) |
107 | 103, 104,
106 | syl2anc 579 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ℝ+
→ ∃𝑟 ∈
ℝ+ 𝑟 <
𝑛) |
108 | 107 | ad2antlr 718 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+)
∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) → ∃𝑟 ∈ ℝ+ 𝑟 < 𝑛) |
109 | | df-rex 3123 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑟 ∈
ℝ+ 𝑟 <
𝑛 ↔ ∃𝑟(𝑟 ∈ ℝ+ ∧ 𝑟 < 𝑛)) |
110 | | simpr3 1256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈
ℝ+) |
111 | 110 | rpred 12163 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈
ℝ) |
112 | | simpr1 1252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑛 ∈
ℝ+) |
113 | 112 | rpred 12163 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑛 ∈
ℝ) |
114 | | simplrl 795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑘 ∈
ℕ) |
115 | 114 | nnrecred 11409 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → (1 /
𝑘) ∈
ℝ) |
116 | | simpr2 1254 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑟 < 𝑛) |
117 | | lttr 10440 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑟 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → ((𝑟 < 𝑛 ∧ 𝑛 < (1 / 𝑘)) → 𝑟 < (1 / 𝑘))) |
118 | 117 | expdimp 446 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑟 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) ∧ 𝑟 < 𝑛) → (𝑛 < (1 / 𝑘) → 𝑟 < (1 / 𝑘))) |
119 | 111, 113,
115, 116, 118 | syl31anc 1496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → (𝑛 < (1 / 𝑘) → 𝑟 < (1 / 𝑘))) |
120 | 4 | anim1i 608 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋)) |
121 | 120 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝐷 ∈
(∞Met‘𝑋) ∧
𝑥 ∈ 𝑋)) |
122 | | rpxr 12130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
123 | | rpxr 12130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 ∈ ℝ+
→ 𝑛 ∈
ℝ*) |
124 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑟 < 𝑛 → 𝑟 < 𝑛) |
125 | 122, 123,
124 | 3anim123i 1194 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑟 ∈ ℝ+
∧ 𝑛 ∈
ℝ+ ∧ 𝑟
< 𝑛) → (𝑟 ∈ ℝ*
∧ 𝑛 ∈
ℝ* ∧ 𝑟
< 𝑛)) |
126 | 125 | 3coml 1161 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+) → (𝑟 ∈ ℝ*
∧ 𝑛 ∈
ℝ* ∧ 𝑟
< 𝑛)) |
127 | 5 | blsscls 22689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (𝑟 ∈ ℝ* ∧ 𝑛 ∈ ℝ*
∧ 𝑟 < 𝑛)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (𝑥(ball‘𝐷)𝑛)) |
128 | 121, 126,
127 | syl2an 589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) →
((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (𝑥(ball‘𝐷)𝑛)) |
129 | | sstr2 3834 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (𝑥(ball‘𝐷)𝑛) → ((𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) |
130 | 128, 129 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → ((𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) |
131 | 119, 130 | anim12d 602 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → ((𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))) |
132 | | simpllr 793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → 𝑥 ∈ 𝑋) |
133 | 132, 110 | jca 507 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → (𝑥 ∈ 𝑋 ∧ 𝑟 ∈
ℝ+)) |
134 | 131, 133 | jctild 521 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+
∧ 𝑟 < 𝑛 ∧ 𝑟 ∈ ℝ+)) → ((𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
135 | 134 | 3exp2 1467 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝑛 ∈
ℝ+ → (𝑟 < 𝑛 → (𝑟 ∈ ℝ+ → ((𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))))))) |
136 | 135 | com35 98 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝑛 ∈
ℝ+ → ((𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → (𝑟 ∈ ℝ+ → (𝑟 < 𝑛 → ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))))))) |
137 | 136 | imp5d 432 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+)
∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) → ((𝑟 ∈ ℝ+ ∧ 𝑟 < 𝑛) → ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
138 | 137 | eximdv 2016 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+)
∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) → (∃𝑟(𝑟 ∈ ℝ+ ∧ 𝑟 < 𝑛) → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
139 | 109, 138 | syl5bi 234 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+)
∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) → (∃𝑟 ∈ ℝ+ 𝑟 < 𝑛 → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
140 | 108, 139 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+)
∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))) → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))) |
141 | 140 | rexlimdva2 3243 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(∃𝑛 ∈
ℝ+ (𝑛 <
(1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
142 | 94, 101, 102, 141 | syl21anc 871 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → (∃𝑛 ∈ ℝ+ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
143 | 93, 142 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))) → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))) |
144 | 143 | 3expia 1154 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(𝑥 ∈
(((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) → ∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
145 | 144 | eximdv 2016 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
(∃𝑥 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) → ∃𝑥∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
146 | 82, 145 | syl5bi 234 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
((((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)) ≠ ∅ → ∃𝑥∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘)))))) |
147 | 81, 146 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
∃𝑥∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))) |
148 | | opabn0 5234 |
. . . . . . . . . . . . 13
⊢
({〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ≠ ∅ ↔ ∃𝑥∃𝑟((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))) |
149 | 147, 148 | sylibr 226 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ≠ ∅) |
150 | | eldifsn 4538 |
. . . . . . . . . . . 12
⊢
({〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ (𝒫 (𝑋 × ℝ+) ∖
{∅}) ↔ ({〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ 𝒫 (𝑋 × ℝ+) ∧
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ≠ ∅)) |
151 | 45, 149, 150 | sylanbrc 578 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) →
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ (𝒫 (𝑋 × ℝ+) ∖
{∅})) |
152 | 151 | ralrimivva 3180 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ ℕ ∀𝑧 ∈ (𝑋 × ℝ+){〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ (𝒫 (𝑋 × ℝ+) ∖
{∅})) |
153 | | bcthlem.5 |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) |
154 | 153 | fmpt2 7505 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
ℕ ∀𝑧 ∈
(𝑋 ×
ℝ+){〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))} ∈ (𝒫 (𝑋 × ℝ+) ∖
{∅}) ↔ 𝐹:(ℕ × (𝑋 ×
ℝ+))⟶(𝒫 (𝑋 × ℝ+) ∖
{∅})) |
155 | 152, 154 | sylib 210 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(ℕ × (𝑋 ×
ℝ+))⟶(𝒫 (𝑋 × ℝ+) ∖
{∅})) |
156 | 155 | 3ad2ant1 1167 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → 𝐹:(ℕ × (𝑋 ×
ℝ+))⟶(𝒫 (𝑋 × ℝ+) ∖
{∅})) |
157 | | 1z 11742 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
158 | | nnuz 12012 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
159 | 157, 158 | axdc4uz 13085 |
. . . . . . . 8
⊢ (((𝑋 × ℝ+)
∈ V ∧ 〈𝑛,
𝑚〉 ∈ (𝑋 × ℝ+)
∧ 𝐹:(ℕ ×
(𝑋 ×
ℝ+))⟶(𝒫 (𝑋 × ℝ+) ∖
{∅})) → ∃𝑔(𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = 〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) |
160 | 31, 40, 156, 159 | syl3anc 1494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) →
∃𝑔(𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = 〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) |
161 | | simpl1 1246 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → 𝜑) |
162 | 161, 1 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → 𝐷 ∈ (CMet‘𝑋)) |
163 | 161, 8 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → 𝑀:ℕ⟶(Clsd‘𝐽)) |
164 | | simpl3 1250 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → 𝑚 ∈ ℝ+) |
165 | 37 | adantr 474 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → 𝑛 ∈ 𝑋) |
166 | | simpr1 1252 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → 𝑔:ℕ⟶(𝑋 ×
ℝ+)) |
167 | | simpr2 1254 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → (𝑔‘1) = 〈𝑛, 𝑚〉) |
168 | | simpr3 1256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛))) |
169 | | fvoveq1 6933 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑔‘(𝑛 + 1)) = (𝑔‘(𝑘 + 1))) |
170 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → 𝑛 = 𝑘) |
171 | | fveq2 6437 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝑔‘𝑛) = (𝑔‘𝑘)) |
172 | 170, 171 | oveq12d 6928 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝑛𝐹(𝑔‘𝑛)) = (𝑘𝐹(𝑔‘𝑘))) |
173 | 169, 172 | eleq12d 2900 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)) ↔ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
174 | 173 | cbvralv 3383 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)) ↔ ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) |
175 | 168, 174 | sylib 210 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) |
176 | 5, 162, 153, 163, 164, 165, 166, 167, 175 | bcthlem4 23502 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+)
∧ (𝑔‘1) =
〈𝑛, 𝑚〉 ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) → ((𝑛(ball‘𝐷)𝑚) ∖ ∪ ran
𝑀) ≠
∅) |
177 | 160, 176 | exlimddv 2034 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → ((𝑛(ball‘𝐷)𝑚) ∖ ∪ ran
𝑀) ≠
∅) |
178 | 10 | ntrss2 21239 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ ∪ ran 𝑀 ⊆ ∪ 𝐽) → ((int‘𝐽)‘∪ ran 𝑀) ⊆ ∪ ran
𝑀) |
179 | 7, 14, 178 | syl2anc 579 |
. . . . . . . . . 10
⊢ (𝜑 → ((int‘𝐽)‘∪ ran 𝑀) ⊆ ∪ ran
𝑀) |
180 | | sstr2 3834 |
. . . . . . . . . 10
⊢ ((𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀) →
(((int‘𝐽)‘∪ ran 𝑀) ⊆ ∪ ran
𝑀 → (𝑛(ball‘𝐷)𝑚) ⊆ ∪ ran
𝑀)) |
181 | 179, 180 | syl5com 31 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀) → (𝑛(ball‘𝐷)𝑚) ⊆ ∪ ran
𝑀)) |
182 | | ssdif0 4173 |
. . . . . . . . 9
⊢ ((𝑛(ball‘𝐷)𝑚) ⊆ ∪ ran
𝑀 ↔ ((𝑛(ball‘𝐷)𝑚) ∖ ∪ ran
𝑀) =
∅) |
183 | 181, 182 | syl6ib 243 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀) → ((𝑛(ball‘𝐷)𝑚) ∖ ∪ ran
𝑀) =
∅)) |
184 | 183 | necon3ad 3012 |
. . . . . . 7
⊢ (𝜑 → (((𝑛(ball‘𝐷)𝑚) ∖ ∪ ran
𝑀) ≠ ∅ →
¬ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀))) |
185 | 184 | 3ad2ant1 1167 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → (((𝑛(ball‘𝐷)𝑚) ∖ ∪ ran
𝑀) ≠ ∅ →
¬ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀))) |
186 | 177, 185 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀) ∧ 𝑚 ∈ ℝ+) → ¬
(𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀)) |
187 | 186 | 3expa 1151 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀)) ∧ 𝑚 ∈ ℝ+)
→ ¬ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀)) |
188 | 187 | nrexdv 3209 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀)) → ¬
∃𝑚 ∈
ℝ+ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘∪ ran
𝑀)) |
189 | 20, 188 | pm2.65da 851 |
. 2
⊢ (𝜑 → ¬ 𝑛 ∈ ((int‘𝐽)‘∪ ran
𝑀)) |
190 | 189 | eq0rdv 4206 |
1
⊢ (𝜑 → ((int‘𝐽)‘∪ ran 𝑀) = ∅) |