MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem5 Structured version   Visualization version   GIF version

Theorem bcthlem5 25376
Description: Lemma for bcth 25377. The proof makes essential use of the Axiom of Dependent Choice axdc4uz 14022, which in the form used here accepts a "selection" function 𝐹 from each element of 𝐾 to a nonempty subset of 𝐾, and the result function 𝑔 maps 𝑔(𝑛 + 1) to an element of 𝐹(𝑛, 𝑔(𝑛)). The trick here is thus in the choice of 𝐹 and 𝐾: we let 𝐾 be the set of all tagged nonempty open sets (tagged here meaning that we have a point and an open set, in an ordered pair), and 𝐹(𝑘, ⟨𝑥, 𝑧⟩) gives the set of all balls of size less than 1 / 𝑘, tagged by their centers, whose closures fit within the given open set 𝑧 and miss 𝑀(𝑘).

Since 𝑀(𝑘) is closed, 𝑧𝑀(𝑘) is open and also nonempty, since 𝑧 is nonempty and 𝑀(𝑘) has empty interior. Then there is some ball contained in it, and hence our function 𝐹 is valid (it never maps to the empty set). Now starting at a point in the interior of ran 𝑀, DC gives us the function 𝑔 all whose elements are constrained by 𝐹 acting on the previous value. (This is all proven in this lemma.) Now 𝑔 is a sequence of tagged open balls, forming an inclusion chain (see bcthlem2 25373) and whose sizes tend to zero, since they are bounded above by 1 / 𝑘. Thus, the centers of these balls form a Cauchy sequence, and converge to a point 𝑥 (see bcthlem4 25375). Since the inclusion chain also ensures the closure of each ball is in the previous ball, the point 𝑥 must be in all these balls (see bcthlem3 25374) and hence misses each 𝑀(𝑘), contradicting the fact that 𝑥 is in the interior of ran 𝑀 (which was the starting point). (Contributed by Mario Carneiro, 6-Jan-2014.)

Hypotheses
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
bcthlem.4 (𝜑𝐷 ∈ (CMet‘𝑋))
bcthlem.5 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
bcthlem.6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
bcthlem5.7 (𝜑 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
Assertion
Ref Expression
bcthlem5 (𝜑 → ((int‘𝐽)‘ ran 𝑀) = ∅)
Distinct variable groups:   𝑘,𝑟,𝑥,𝑧,𝐷   𝑘,𝐹,𝑟,𝑥,𝑧   𝑘,𝐽,𝑟,𝑥,𝑧   𝑘,𝑀,𝑟,𝑥,𝑧   𝜑,𝑘,𝑟,𝑥,𝑧   𝑘,𝑋,𝑟,𝑥,𝑧

Proof of Theorem bcthlem5
Dummy variables 𝑛 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcthlem.4 . . . . . 6 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 25334 . . . . . 6 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
3 metxmet 24360 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
41, 2, 33syl 18 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 bcth.2 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
65mopntop 24466 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
74, 6syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
8 bcthlem.6 . . . . . . . . 9 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
98frnd 6745 . . . . . . . 8 (𝜑 → ran 𝑀 ⊆ (Clsd‘𝐽))
10 eqid 2735 . . . . . . . . 9 𝐽 = 𝐽
1110cldss2 23054 . . . . . . . 8 (Clsd‘𝐽) ⊆ 𝒫 𝐽
129, 11sstrdi 4008 . . . . . . 7 (𝜑 → ran 𝑀 ⊆ 𝒫 𝐽)
13 sspwuni 5105 . . . . . . 7 (ran 𝑀 ⊆ 𝒫 𝐽 ran 𝑀 𝐽)
1412, 13sylib 218 . . . . . 6 (𝜑 ran 𝑀 𝐽)
1510ntropn 23073 . . . . . 6 ((𝐽 ∈ Top ∧ ran 𝑀 𝐽) → ((int‘𝐽)‘ ran 𝑀) ∈ 𝐽)
167, 14, 15syl2anc 584 . . . . 5 (𝜑 → ((int‘𝐽)‘ ran 𝑀) ∈ 𝐽)
174, 16jca 511 . . . 4 (𝜑 → (𝐷 ∈ (∞Met‘𝑋) ∧ ((int‘𝐽)‘ ran 𝑀) ∈ 𝐽))
185mopni2 24522 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((int‘𝐽)‘ ran 𝑀) ∈ 𝐽𝑛 ∈ ((int‘𝐽)‘ ran 𝑀)) → ∃𝑚 ∈ ℝ+ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘ ran 𝑀))
19183expa 1117 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ ((int‘𝐽)‘ ran 𝑀) ∈ 𝐽) ∧ 𝑛 ∈ ((int‘𝐽)‘ ran 𝑀)) → ∃𝑚 ∈ ℝ+ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘ ran 𝑀))
2017, 19sylan 580 . . 3 ((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀)) → ∃𝑚 ∈ ℝ+ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘ ran 𝑀))
215mopnuni 24467 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
224, 21syl 17 . . . . . . . . . . 11 (𝜑𝑋 = 𝐽)
2310topopn 22928 . . . . . . . . . . . 12 (𝐽 ∈ Top → 𝐽𝐽)
247, 23syl 17 . . . . . . . . . . 11 (𝜑 𝐽𝐽)
2522, 24eqeltrd 2839 . . . . . . . . . 10 (𝜑𝑋𝐽)
26 reex 11244 . . . . . . . . . . 11 ℝ ∈ V
27 rpssre 13040 . . . . . . . . . . 11 + ⊆ ℝ
2826, 27ssexi 5328 . . . . . . . . . 10 + ∈ V
29 xpexg 7769 . . . . . . . . . 10 ((𝑋𝐽 ∧ ℝ+ ∈ V) → (𝑋 × ℝ+) ∈ V)
3025, 28, 29sylancl 586 . . . . . . . . 9 (𝜑 → (𝑋 × ℝ+) ∈ V)
31303ad2ant1 1132 . . . . . . . 8 ((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) → (𝑋 × ℝ+) ∈ V)
3210ntrss3 23084 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ ran 𝑀 𝐽) → ((int‘𝐽)‘ ran 𝑀) ⊆ 𝐽)
337, 14, 32syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((int‘𝐽)‘ ran 𝑀) ⊆ 𝐽)
3433, 22sseqtrrd 4037 . . . . . . . . . . 11 (𝜑 → ((int‘𝐽)‘ ran 𝑀) ⊆ 𝑋)
35343ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) → ((int‘𝐽)‘ ran 𝑀) ⊆ 𝑋)
36 simp2 1136 . . . . . . . . . 10 ((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) → 𝑛 ∈ ((int‘𝐽)‘ ran 𝑀))
3735, 36sseldd 3996 . . . . . . . . 9 ((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) → 𝑛𝑋)
38 simp3 1137 . . . . . . . . 9 ((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) → 𝑚 ∈ ℝ+)
3937, 38opelxpd 5728 . . . . . . . 8 ((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) → ⟨𝑛, 𝑚⟩ ∈ (𝑋 × ℝ+))
40 opabssxp 5781 . . . . . . . . . . . . 13 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ⊆ (𝑋 × ℝ+)
41 elpw2g 5339 . . . . . . . . . . . . . . 15 ((𝑋 × ℝ+) ∈ V → ({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ∈ 𝒫 (𝑋 × ℝ+) ↔ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ⊆ (𝑋 × ℝ+)))
4230, 41syl 17 . . . . . . . . . . . . . 14 (𝜑 → ({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ∈ 𝒫 (𝑋 × ℝ+) ↔ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ⊆ (𝑋 × ℝ+)))
4342adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → ({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ∈ 𝒫 (𝑋 × ℝ+) ↔ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ⊆ (𝑋 × ℝ+)))
4440, 43mpbiri 258 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ∈ 𝒫 (𝑋 × ℝ+))
45 bcthlem5.7 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅)
46 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) → 𝑘 ∈ ℕ)
47 rspa 3246 . . . . . . . . . . . . . . . 16 ((∀𝑘 ∈ ℕ ((int‘𝐽)‘(𝑀𝑘)) = ∅ ∧ 𝑘 ∈ ℕ) → ((int‘𝐽)‘(𝑀𝑘)) = ∅)
4845, 46, 47syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → ((int‘𝐽)‘(𝑀𝑘)) = ∅)
49 ssdif0 4372 . . . . . . . . . . . . . . . . 17 (((ball‘𝐷)‘𝑧) ⊆ (𝑀𝑘) ↔ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) = ∅)
50 1st2nd2 8052 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝑋 × ℝ+) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
5150ad2antll 729 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
5251fveq2d 6911 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → ((ball‘𝐷)‘𝑧) = ((ball‘𝐷)‘⟨(1st𝑧), (2nd𝑧)⟩))
53 df-ov 7434 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑧)(ball‘𝐷)(2nd𝑧)) = ((ball‘𝐷)‘⟨(1st𝑧), (2nd𝑧)⟩)
5452, 53eqtr4di 2793 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → ((ball‘𝐷)‘𝑧) = ((1st𝑧)(ball‘𝐷)(2nd𝑧)))
554adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → 𝐷 ∈ (∞Met‘𝑋))
56 xp1st 8045 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝑋 × ℝ+) → (1st𝑧) ∈ 𝑋)
5756ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (1st𝑧) ∈ 𝑋)
58 xp2nd 8046 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝑋 × ℝ+) → (2nd𝑧) ∈ ℝ+)
5958ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (2nd𝑧) ∈ ℝ+)
60 bln0 24441 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st𝑧) ∈ 𝑋 ∧ (2nd𝑧) ∈ ℝ+) → ((1st𝑧)(ball‘𝐷)(2nd𝑧)) ≠ ∅)
6155, 57, 59, 60syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → ((1st𝑧)(ball‘𝐷)(2nd𝑧)) ≠ ∅)
6254, 61eqnetrd 3006 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → ((ball‘𝐷)‘𝑧) ≠ ∅)
637adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → 𝐽 ∈ Top)
64 ffvelcdm 7101 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀:ℕ⟶(Clsd‘𝐽) ∧ 𝑘 ∈ ℕ) → (𝑀𝑘) ∈ (Clsd‘𝐽))
658, 46, 64syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (𝑀𝑘) ∈ (Clsd‘𝐽))
6610cldss 23053 . . . . . . . . . . . . . . . . . . . 20 ((𝑀𝑘) ∈ (Clsd‘𝐽) → (𝑀𝑘) ⊆ 𝐽)
6765, 66syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (𝑀𝑘) ⊆ 𝐽)
6859rpxrd 13076 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (2nd𝑧) ∈ ℝ*)
695blopn 24529 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st𝑧) ∈ 𝑋 ∧ (2nd𝑧) ∈ ℝ*) → ((1st𝑧)(ball‘𝐷)(2nd𝑧)) ∈ 𝐽)
7055, 57, 68, 69syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → ((1st𝑧)(ball‘𝐷)(2nd𝑧)) ∈ 𝐽)
7154, 70eqeltrd 2839 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → ((ball‘𝐷)‘𝑧) ∈ 𝐽)
7210ssntr 23082 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ Top ∧ (𝑀𝑘) ⊆ 𝐽) ∧ (((ball‘𝐷)‘𝑧) ∈ 𝐽 ∧ ((ball‘𝐷)‘𝑧) ⊆ (𝑀𝑘))) → ((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀𝑘)))
7372expr 456 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ Top ∧ (𝑀𝑘) ⊆ 𝐽) ∧ ((ball‘𝐷)‘𝑧) ∈ 𝐽) → (((ball‘𝐷)‘𝑧) ⊆ (𝑀𝑘) → ((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀𝑘))))
7463, 67, 71, 73syl21anc 838 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (((ball‘𝐷)‘𝑧) ⊆ (𝑀𝑘) → ((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀𝑘))))
75 ssn0 4410 . . . . . . . . . . . . . . . . . . 19 ((((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀𝑘)) ∧ ((ball‘𝐷)‘𝑧) ≠ ∅) → ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅)
7675expcom 413 . . . . . . . . . . . . . . . . . 18 (((ball‘𝐷)‘𝑧) ≠ ∅ → (((ball‘𝐷)‘𝑧) ⊆ ((int‘𝐽)‘(𝑀𝑘)) → ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅))
7762, 74, 76sylsyld 61 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (((ball‘𝐷)‘𝑧) ⊆ (𝑀𝑘) → ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅))
7849, 77biimtrrid 243 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → ((((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) = ∅ → ((int‘𝐽)‘(𝑀𝑘)) ≠ ∅))
7978necon2d 2961 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (((int‘𝐽)‘(𝑀𝑘)) = ∅ → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ≠ ∅))
8048, 79mpd 15 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ≠ ∅)
81 n0 4359 . . . . . . . . . . . . . . 15 ((((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))
8243ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → 𝐷 ∈ (∞Met‘𝑋))
8310difopn 23058 . . . . . . . . . . . . . . . . . . . . 21 ((((ball‘𝐷)‘𝑧) ∈ 𝐽 ∧ (𝑀𝑘) ∈ (Clsd‘𝐽)) → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ∈ 𝐽)
8471, 65, 83syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ∈ 𝐽)
85843adant3 1131 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ∈ 𝐽)
86 simp3 1137 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))
87 simp2l 1198 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → 𝑘 ∈ ℕ)
88 nnrp 13044 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
8988rpreccld 13085 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
9087, 89syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → (1 / 𝑘) ∈ ℝ+)
915mopni3 24523 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ∈ (∞Met‘𝑋) ∧ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ∈ 𝐽𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) ∧ (1 / 𝑘) ∈ ℝ+) → ∃𝑛 ∈ ℝ+ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))
9282, 85, 86, 90, 91syl31anc 1372 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → ∃𝑛 ∈ ℝ+ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))
93 simp1 1135 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → 𝜑)
94 elssuni 4942 . . . . . . . . . . . . . . . . . . . . . . . 24 (((ball‘𝐷)‘𝑧) ∈ 𝐽 → ((ball‘𝐷)‘𝑧) ⊆ 𝐽)
9571, 94syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → ((ball‘𝐷)‘𝑧) ⊆ 𝐽)
9622adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → 𝑋 = 𝐽)
9795, 96sseqtrrd 4037 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → ((ball‘𝐷)‘𝑧) ⊆ 𝑋)
9897ssdifssd 4157 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ⊆ 𝑋)
9998sseld 3994 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) → 𝑥𝑋))
100993impia 1116 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → 𝑥𝑋)
101 simp2 1136 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)))
102 rphalfcl 13060 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℝ+ → (𝑛 / 2) ∈ ℝ+)
103 rphalflt 13062 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℝ+ → (𝑛 / 2) < 𝑛)
104 breq1 5151 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 = (𝑛 / 2) → (𝑟 < 𝑛 ↔ (𝑛 / 2) < 𝑛))
105104rspcev 3622 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 / 2) ∈ ℝ+ ∧ (𝑛 / 2) < 𝑛) → ∃𝑟 ∈ ℝ+ 𝑟 < 𝑛)
106102, 103, 105syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℝ+ → ∃𝑟 ∈ ℝ+ 𝑟 < 𝑛)
107106ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+) ∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))) → ∃𝑟 ∈ ℝ+ 𝑟 < 𝑛)
108 df-rex 3069 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑟 ∈ ℝ+ 𝑟 < 𝑛 ↔ ∃𝑟(𝑟 ∈ ℝ+𝑟 < 𝑛))
109 simpr3 1195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
110109rpred 13075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
111 simpr1 1193 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → 𝑛 ∈ ℝ+)
112111rpred 13075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → 𝑛 ∈ ℝ)
113 simplrl 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → 𝑘 ∈ ℕ)
114113nnrecred 12315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → (1 / 𝑘) ∈ ℝ)
115 simpr2 1194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → 𝑟 < 𝑛)
116 lttr 11335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑟 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → ((𝑟 < 𝑛𝑛 < (1 / 𝑘)) → 𝑟 < (1 / 𝑘)))
117116expdimp 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑟 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) ∧ 𝑟 < 𝑛) → (𝑛 < (1 / 𝑘) → 𝑟 < (1 / 𝑘)))
118110, 112, 114, 115, 117syl31anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → (𝑛 < (1 / 𝑘) → 𝑟 < (1 / 𝑘)))
1194anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑥𝑋) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋))
120119adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋))
121 rpxr 13042 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
122 rpxr 13042 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 ∈ ℝ+𝑛 ∈ ℝ*)
123 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑟 < 𝑛𝑟 < 𝑛)
124121, 122, 1233anim123i 1150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑟 ∈ ℝ+𝑛 ∈ ℝ+𝑟 < 𝑛) → (𝑟 ∈ ℝ*𝑛 ∈ ℝ*𝑟 < 𝑛))
1251243coml 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+) → (𝑟 ∈ ℝ*𝑛 ∈ ℝ*𝑟 < 𝑛))
1265blsscls 24536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ*𝑛 ∈ ℝ*𝑟 < 𝑛)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (𝑥(ball‘𝐷)𝑛))
127120, 125, 126syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (𝑥(ball‘𝐷)𝑛))
128 sstr2 4002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (𝑥(ball‘𝐷)𝑛) → ((𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))
129127, 128syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → ((𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) → ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))
130118, 129anim12d 609 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → ((𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))))
131 simpllr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → 𝑥𝑋)
132131, 109jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → (𝑥𝑋𝑟 ∈ ℝ+))
133130, 132jctild 525 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ (𝑛 ∈ ℝ+𝑟 < 𝑛𝑟 ∈ ℝ+)) → ((𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))))
1341333exp2 1353 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (𝑛 ∈ ℝ+ → (𝑟 < 𝑛 → (𝑟 ∈ ℝ+ → ((𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))))))))
135134com35 98 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (𝑛 ∈ ℝ+ → ((𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → (𝑟 ∈ ℝ+ → (𝑟 < 𝑛 → ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))))))))
136135imp5d 439 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+) ∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))) → ((𝑟 ∈ ℝ+𝑟 < 𝑛) → ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))))
137136eximdv 1915 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+) ∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))) → (∃𝑟(𝑟 ∈ ℝ+𝑟 < 𝑛) → ∃𝑟((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))))
138108, 137biimtrid 242 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+) ∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))) → (∃𝑟 ∈ ℝ+ 𝑟 < 𝑛 → ∃𝑟((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))))
139107, 138mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) ∧ 𝑛 ∈ ℝ+) ∧ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))) → ∃𝑟((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))))
140139rexlimdva2 3155 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (∃𝑛 ∈ ℝ+ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → ∃𝑟((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))))
14193, 100, 101, 140syl21anc 838 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → (∃𝑛 ∈ ℝ+ (𝑛 < (1 / 𝑘) ∧ (𝑥(ball‘𝐷)𝑛) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → ∃𝑟((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))))
14292, 141mpd 15 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+)) ∧ 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))) → ∃𝑟((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))))
1431423expia 1120 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) → ∃𝑟((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))))
144143eximdv 1915 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → (∃𝑥 𝑥 ∈ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) → ∃𝑥𝑟((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))))
14581, 144biimtrid 242 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → ((((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)) ≠ ∅ → ∃𝑥𝑟((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))))
14680, 145mpd 15 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → ∃𝑥𝑟((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))))
147 opabn0 5563 . . . . . . . . . . . . 13 ({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ≠ ∅ ↔ ∃𝑥𝑟((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘)))))
148146, 147sylibr 234 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ≠ ∅)
149 eldifsn 4791 . . . . . . . . . . . 12 ({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ∈ (𝒫 (𝑋 × ℝ+) ∖ {∅}) ↔ ({⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ∈ 𝒫 (𝑋 × ℝ+) ∧ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ≠ ∅))
15044, 148, 149sylanbrc 583 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑧 ∈ (𝑋 × ℝ+))) → {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ∈ (𝒫 (𝑋 × ℝ+) ∖ {∅}))
151150ralrimivva 3200 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ ∀𝑧 ∈ (𝑋 × ℝ+){⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ∈ (𝒫 (𝑋 × ℝ+) ∖ {∅}))
152 bcthlem.5 . . . . . . . . . . 11 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
153152fmpo 8092 . . . . . . . . . 10 (∀𝑘 ∈ ℕ ∀𝑧 ∈ (𝑋 × ℝ+){⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))} ∈ (𝒫 (𝑋 × ℝ+) ∖ {∅}) ↔ 𝐹:(ℕ × (𝑋 × ℝ+))⟶(𝒫 (𝑋 × ℝ+) ∖ {∅}))
154151, 153sylib 218 . . . . . . . . 9 (𝜑𝐹:(ℕ × (𝑋 × ℝ+))⟶(𝒫 (𝑋 × ℝ+) ∖ {∅}))
1551543ad2ant1 1132 . . . . . . . 8 ((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) → 𝐹:(ℕ × (𝑋 × ℝ+))⟶(𝒫 (𝑋 × ℝ+) ∖ {∅}))
156 1z 12645 . . . . . . . . 9 1 ∈ ℤ
157 nnuz 12919 . . . . . . . . 9 ℕ = (ℤ‘1)
158156, 157axdc4uz 14022 . . . . . . . 8 (((𝑋 × ℝ+) ∈ V ∧ ⟨𝑛, 𝑚⟩ ∈ (𝑋 × ℝ+) ∧ 𝐹:(ℕ × (𝑋 × ℝ+))⟶(𝒫 (𝑋 × ℝ+) ∖ {∅})) → ∃𝑔(𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = ⟨𝑛, 𝑚⟩ ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛))))
15931, 39, 155, 158syl3anc 1370 . . . . . . 7 ((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) → ∃𝑔(𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = ⟨𝑛, 𝑚⟩ ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛))))
160 simpl1 1190 . . . . . . . . 9 (((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = ⟨𝑛, 𝑚⟩ ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))) → 𝜑)
161160, 1syl 17 . . . . . . . 8 (((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = ⟨𝑛, 𝑚⟩ ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))) → 𝐷 ∈ (CMet‘𝑋))
162160, 8syl 17 . . . . . . . 8 (((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = ⟨𝑛, 𝑚⟩ ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))) → 𝑀:ℕ⟶(Clsd‘𝐽))
163 simpl3 1192 . . . . . . . 8 (((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = ⟨𝑛, 𝑚⟩ ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))) → 𝑚 ∈ ℝ+)
16437adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = ⟨𝑛, 𝑚⟩ ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))) → 𝑛𝑋)
165 simpr1 1193 . . . . . . . 8 (((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = ⟨𝑛, 𝑚⟩ ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))) → 𝑔:ℕ⟶(𝑋 × ℝ+))
166 simpr2 1194 . . . . . . . 8 (((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = ⟨𝑛, 𝑚⟩ ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))) → (𝑔‘1) = ⟨𝑛, 𝑚⟩)
167 simpr3 1195 . . . . . . . . 9 (((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = ⟨𝑛, 𝑚⟩ ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))) → ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))
168 fvoveq1 7454 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑔‘(𝑛 + 1)) = (𝑔‘(𝑘 + 1)))
169 id 22 . . . . . . . . . . . 12 (𝑛 = 𝑘𝑛 = 𝑘)
170 fveq2 6907 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝑔𝑛) = (𝑔𝑘))
171169, 170oveq12d 7449 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝑛𝐹(𝑔𝑛)) = (𝑘𝐹(𝑔𝑘)))
172168, 171eleq12d 2833 . . . . . . . . . 10 (𝑛 = 𝑘 → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
173172cbvralvw 3235 . . . . . . . . 9 (∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
174167, 173sylib 218 . . . . . . . 8 (((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = ⟨𝑛, 𝑚⟩ ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))) → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
1755, 161, 152, 162, 163, 164, 165, 166, 174bcthlem4 25375 . . . . . . 7 (((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) ∧ (𝑔:ℕ⟶(𝑋 × ℝ+) ∧ (𝑔‘1) = ⟨𝑛, 𝑚⟩ ∧ ∀𝑛 ∈ ℕ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))) → ((𝑛(ball‘𝐷)𝑚) ∖ ran 𝑀) ≠ ∅)
176159, 175exlimddv 1933 . . . . . 6 ((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) → ((𝑛(ball‘𝐷)𝑚) ∖ ran 𝑀) ≠ ∅)
17710ntrss2 23081 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ ran 𝑀 𝐽) → ((int‘𝐽)‘ ran 𝑀) ⊆ ran 𝑀)
1787, 14, 177syl2anc 584 . . . . . . . . . 10 (𝜑 → ((int‘𝐽)‘ ran 𝑀) ⊆ ran 𝑀)
179 sstr2 4002 . . . . . . . . . 10 ((𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘ ran 𝑀) → (((int‘𝐽)‘ ran 𝑀) ⊆ ran 𝑀 → (𝑛(ball‘𝐷)𝑚) ⊆ ran 𝑀))
180178, 179syl5com 31 . . . . . . . . 9 (𝜑 → ((𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘ ran 𝑀) → (𝑛(ball‘𝐷)𝑚) ⊆ ran 𝑀))
181 ssdif0 4372 . . . . . . . . 9 ((𝑛(ball‘𝐷)𝑚) ⊆ ran 𝑀 ↔ ((𝑛(ball‘𝐷)𝑚) ∖ ran 𝑀) = ∅)
182180, 181imbitrdi 251 . . . . . . . 8 (𝜑 → ((𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘ ran 𝑀) → ((𝑛(ball‘𝐷)𝑚) ∖ ran 𝑀) = ∅))
183182necon3ad 2951 . . . . . . 7 (𝜑 → (((𝑛(ball‘𝐷)𝑚) ∖ ran 𝑀) ≠ ∅ → ¬ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘ ran 𝑀)))
1841833ad2ant1 1132 . . . . . 6 ((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) → (((𝑛(ball‘𝐷)𝑚) ∖ ran 𝑀) ≠ ∅ → ¬ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘ ran 𝑀)))
185176, 184mpd 15 . . . . 5 ((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀) ∧ 𝑚 ∈ ℝ+) → ¬ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘ ran 𝑀))
1861853expa 1117 . . . 4 (((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀)) ∧ 𝑚 ∈ ℝ+) → ¬ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘ ran 𝑀))
187186nrexdv 3147 . . 3 ((𝜑𝑛 ∈ ((int‘𝐽)‘ ran 𝑀)) → ¬ ∃𝑚 ∈ ℝ+ (𝑛(ball‘𝐷)𝑚) ⊆ ((int‘𝐽)‘ ran 𝑀))
18820, 187pm2.65da 817 . 2 (𝜑 → ¬ 𝑛 ∈ ((int‘𝐽)‘ ran 𝑀))
189188eq0rdv 4413 1 (𝜑 → ((int‘𝐽)‘ ran 𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631  cop 4637   cuni 4912   class class class wbr 5148  {copab 5210   × cxp 5687  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  1st c1st 8011  2nd c2nd 8012  cr 11152  1c1 11154   + caddc 11156  *cxr 11292   < clt 11293   / cdiv 11918  cn 12264  2c2 12319  +crp 13032  ∞Metcxmet 21367  Metcmet 21368  ballcbl 21369  MetOpencmopn 21372  Topctop 22915  Clsdccld 23040  intcnt 23041  clsccl 23042  CMetccmet 25302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-dc 10484  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-top 22916  df-topon 22933  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lm 23253  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-cfil 25303  df-cau 25304  df-cmet 25305
This theorem is referenced by:  bcth  25377
  Copyright terms: Public domain W3C validator