MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp45 Structured version   Visualization version   GIF version

Theorem exp45 438
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp45.1 ((𝜑 ∧ (𝜓 ∧ (𝜒𝜃))) → 𝜏)
Assertion
Ref Expression
exp45 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp45
StepHypRef Expression
1 exp45.1 . . 3 ((𝜑 ∧ (𝜓 ∧ (𝜒𝜃))) → 𝜏)
21exp32 420 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
32exp4a 431 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  oaass  8598  zorn2lem4  10537  zorn2lem7  10540  iscatd2  17726  fgss2  23898  alexsubALTlem4  24074  grporcan  30547  spansncvi  31681  mdsymlem5  32436  riotasv3d  38942  cvratlem  39404  hbtlem2  43113
  Copyright terms: Public domain W3C validator