![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exp45 | Structured version Visualization version GIF version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp45.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) → 𝜏) |
Ref | Expression |
---|---|
exp45 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp45.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) → 𝜏) | |
2 | 1 | exp32 420 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
3 | 2 | exp4a 431 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: oaass 8567 zorn2lem4 10500 zorn2lem7 10503 iscatd2 17632 fgss2 23698 alexsubALTlem4 23874 grporcan 30204 spansncvi 31338 mdsymlem5 32093 riotasv3d 38294 cvratlem 38756 hbtlem2 42329 |
Copyright terms: Public domain | W3C validator |