MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp45 Structured version   Visualization version   GIF version

Theorem exp45 439
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp45.1 ((𝜑 ∧ (𝜓 ∧ (𝜒𝜃))) → 𝜏)
Assertion
Ref Expression
exp45 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Proof of Theorem exp45
StepHypRef Expression
1 exp45.1 . . 3 ((𝜑 ∧ (𝜓 ∧ (𝜒𝜃))) → 𝜏)
21exp32 421 . 2 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
32exp4a 432 1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  oaass  8392  zorn2lem4  10255  zorn2lem7  10258  iscatd2  17390  fgss2  23025  alexsubALTlem4  23201  grporcan  28880  spansncvi  30014  mdsymlem5  30769  riotasv3d  36974  cvratlem  37435  hbtlem2  40949
  Copyright terms: Public domain W3C validator