Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicc3 Structured version   Visualization version   GIF version

Theorem elicc3 35197
Description: An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
elicc3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))

Proof of Theorem elicc3
StepHypRef Expression
1 elicc1 13367 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 simp1 1136 . . . . 5 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ*)
32a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ*))
4 xrletr 13136 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐶𝐶𝐵) → 𝐴𝐵))
54exp5o 1355 . . . . . 6 (𝐴 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐶 → (𝐶𝐵𝐴𝐵)))))
65com23 86 . . . . 5 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐴𝐶 → (𝐶𝐵𝐴𝐵)))))
76imp5q 35192 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐴𝐵))
8 df-ne 2941 . . . . . . . . . 10 (𝐶𝐴 ↔ ¬ 𝐶 = 𝐴)
9 xrleltne 13123 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (𝐴 < 𝐶𝐶𝐴))
109biimprd 247 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (𝐶𝐴𝐴 < 𝐶))
118, 10biimtrrid 242 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
12113adant3r3 1184 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
1312adantlr 713 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
14 eqcom 2739 . . . . . . . . . . . . . 14 (𝐶 = 𝐵𝐵 = 𝐶)
1514necon3bbii 2988 . . . . . . . . . . . . 13 𝐶 = 𝐵𝐵𝐶)
16 xrleltne 13123 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (𝐶 < 𝐵𝐵𝐶))
1716biimprd 247 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (𝐵𝐶𝐶 < 𝐵))
1815, 17biimtrid 241 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
19183exp 1119 . . . . . . . . . . 11 (𝐶 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐶𝐵 → (¬ 𝐶 = 𝐵𝐶 < 𝐵))))
2019com12 32 . . . . . . . . . 10 (𝐵 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐶𝐵 → (¬ 𝐶 = 𝐵𝐶 < 𝐵))))
2120imp32 419 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
22213adantr2 1170 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
2322adantll 712 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
2413, 23anim12d 609 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)))
2524ex 413 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵))))
26 df-or 846 . . . . . 6 ((𝐶 = 𝐴 ∨ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
27 3orass 1090 . . . . . 6 ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) ↔ (𝐶 = 𝐴 ∨ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
28 pm5.6 1000 . . . . . . 7 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (¬ 𝐶 = 𝐴 → (𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵))))
29 orcom 868 . . . . . . . 8 ((𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵)) ↔ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))
3029imbi2i 335 . . . . . . 7 ((¬ 𝐶 = 𝐴 → (𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵))) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
3128, 30bitri 274 . . . . . 6 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
3226, 27, 313bitr4ri 303 . . . . 5 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))
3325, 32imbitrdi 250 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
343, 7, 333jcad 1129 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
35 simp1 1136 . . . . 5 ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ ℝ*)
3635a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ ℝ*))
37 xrleid 13129 . . . . . . . . 9 (𝐴 ∈ ℝ*𝐴𝐴)
3837ad3antrrr 728 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴𝐴)
39 breq2 5152 . . . . . . . 8 (𝐶 = 𝐴 → (𝐴𝐶𝐴𝐴))
4038, 39syl5ibrcom 246 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐴𝐴𝐶))
41 xrltle 13127 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶𝐴𝐶))
4241adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 < 𝐶𝐴𝐶))
4342adantllr 717 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 < 𝐶𝐴𝐶))
4443adantrd 492 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐴𝐶))
45 simpr 485 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴𝐵)
46 breq2 5152 . . . . . . . 8 (𝐶 = 𝐵 → (𝐴𝐶𝐴𝐵))
4745, 46syl5ibrcom 246 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐵𝐴𝐶))
4840, 44, 473jaod 1428 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐴𝐶))
4948exp31 420 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ ℝ* → (𝐴𝐵 → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐴𝐶))))
50493impd 1348 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐴𝐶))
51 breq1 5151 . . . . . . . 8 (𝐶 = 𝐴 → (𝐶𝐵𝐴𝐵))
5245, 51syl5ibrcom 246 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐴𝐶𝐵))
53 xrltle 13127 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 < 𝐵𝐶𝐵))
5453ancoms 459 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < 𝐵𝐶𝐵))
5554adantld 491 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
5655adantll 712 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
5756adantr 481 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
58 xrleid 13129 . . . . . . . . 9 (𝐵 ∈ ℝ*𝐵𝐵)
5958ad3antlr 729 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵𝐵)
60 breq1 5151 . . . . . . . 8 (𝐶 = 𝐵 → (𝐶𝐵𝐵𝐵))
6159, 60syl5ibrcom 246 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐵𝐶𝐵))
6252, 57, 613jaod 1428 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐶𝐵))
6362exp31 420 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ ℝ* → (𝐴𝐵 → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐶𝐵))))
64633impd 1348 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶𝐵))
6536, 50, 643jcad 1129 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
6634, 65impbid 211 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
671, 66bitrd 278 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wne 2940   class class class wbr 5148  (class class class)co 7408  *cxr 11246   < clt 11247  cle 11248  [,]cicc 13326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-icc 13330
This theorem is referenced by:  ivthALT  35215
  Copyright terms: Public domain W3C validator