Proof of Theorem elicc3
Step | Hyp | Ref
| Expression |
1 | | elicc1 13123 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
2 | | simp1 1135 |
. . . . 5
⊢ ((𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐶 ∈
ℝ*) |
3 | 2 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐶 ∈
ℝ*)) |
4 | | xrletr 12892 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝐵
∈ ℝ*) → ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
5 | 4 | exp5o 1354 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (𝐶 ∈
ℝ* → (𝐵 ∈ ℝ* → (𝐴 ≤ 𝐶 → (𝐶 ≤ 𝐵 → 𝐴 ≤ 𝐵))))) |
6 | 5 | com23 86 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ (𝐵 ∈
ℝ* → (𝐶 ∈ ℝ* → (𝐴 ≤ 𝐶 → (𝐶 ≤ 𝐵 → 𝐴 ≤ 𝐵))))) |
7 | 6 | imp5q 34501 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
8 | | df-ne 2944 |
. . . . . . . . . 10
⊢ (𝐶 ≠ 𝐴 ↔ ¬ 𝐶 = 𝐴) |
9 | | xrleltne 12879 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝐴
≤ 𝐶) → (𝐴 < 𝐶 ↔ 𝐶 ≠ 𝐴)) |
10 | 9 | biimprd 247 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝐴
≤ 𝐶) → (𝐶 ≠ 𝐴 → 𝐴 < 𝐶)) |
11 | 8, 10 | syl5bir 242 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝐴
≤ 𝐶) → (¬ 𝐶 = 𝐴 → 𝐴 < 𝐶)) |
12 | 11 | 3adant3r3 1183 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ (𝐶 ∈
ℝ* ∧ 𝐴
≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → (¬ 𝐶 = 𝐴 → 𝐴 < 𝐶)) |
13 | 12 | adantlr 712 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → (¬ 𝐶 = 𝐴 → 𝐴 < 𝐶)) |
14 | | eqcom 2745 |
. . . . . . . . . . . . . 14
⊢ (𝐶 = 𝐵 ↔ 𝐵 = 𝐶) |
15 | 14 | necon3bbii 2991 |
. . . . . . . . . . . . 13
⊢ (¬
𝐶 = 𝐵 ↔ 𝐵 ≠ 𝐶) |
16 | | xrleltne 12879 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
≤ 𝐵) → (𝐶 < 𝐵 ↔ 𝐵 ≠ 𝐶)) |
17 | 16 | biimprd 247 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
≤ 𝐵) → (𝐵 ≠ 𝐶 → 𝐶 < 𝐵)) |
18 | 15, 17 | syl5bi 241 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
≤ 𝐵) → (¬ 𝐶 = 𝐵 → 𝐶 < 𝐵)) |
19 | 18 | 3exp 1118 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ ℝ*
→ (𝐵 ∈
ℝ* → (𝐶 ≤ 𝐵 → (¬ 𝐶 = 𝐵 → 𝐶 < 𝐵)))) |
20 | 19 | com12 32 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ*
→ (𝐶 ∈
ℝ* → (𝐶 ≤ 𝐵 → (¬ 𝐶 = 𝐵 → 𝐶 < 𝐵)))) |
21 | 20 | imp32 419 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ*
∧ (𝐶 ∈
ℝ* ∧ 𝐶
≤ 𝐵)) → (¬
𝐶 = 𝐵 → 𝐶 < 𝐵)) |
22 | 21 | 3adantr2 1169 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ*
∧ (𝐶 ∈
ℝ* ∧ 𝐴
≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → (¬ 𝐶 = 𝐵 → 𝐶 < 𝐵)) |
23 | 22 | adantll 711 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → (¬ 𝐶 = 𝐵 → 𝐶 < 𝐵)) |
24 | 13, 23 | anim12d 609 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
25 | 24 | ex 413 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)))) |
26 | | df-or 845 |
. . . . . 6
⊢ ((𝐶 = 𝐴 ∨ ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵))) |
27 | | 3orass 1089 |
. . . . . 6
⊢ ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵) ↔ (𝐶 = 𝐴 ∨ ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵))) |
28 | | pm5.6 999 |
. . . . . . 7
⊢ (((¬
𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) ↔ (¬ 𝐶 = 𝐴 → (𝐶 = 𝐵 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)))) |
29 | | orcom 867 |
. . . . . . . 8
⊢ ((𝐶 = 𝐵 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) ↔ ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) |
30 | 29 | imbi2i 336 |
. . . . . . 7
⊢ ((¬
𝐶 = 𝐴 → (𝐶 = 𝐵 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵))) |
31 | 28, 30 | bitri 274 |
. . . . . 6
⊢ (((¬
𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵))) |
32 | 26, 27, 31 | 3bitr4ri 304 |
. . . . 5
⊢ (((¬
𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) ↔ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) |
33 | 25, 32 | syl6ib 250 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵))) |
34 | 3, 7, 33 | 3jcad 1128 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))) |
35 | | simp1 1135 |
. . . . 5
⊢ ((𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈
ℝ*) |
36 | 35 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈
ℝ*)) |
37 | | xrleid 12885 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ*
→ 𝐴 ≤ 𝐴) |
38 | 37 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐴) |
39 | | breq2 5078 |
. . . . . . . 8
⊢ (𝐶 = 𝐴 → (𝐴 ≤ 𝐶 ↔ 𝐴 ≤ 𝐴)) |
40 | 38, 39 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐶 = 𝐴 → 𝐴 ≤ 𝐶)) |
41 | | xrltle 12883 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) |
42 | 41 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) |
43 | 42 | adantllr 716 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) |
44 | 43 | adantrd 492 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐴 ≤ 𝐶)) |
45 | | simpr 485 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) |
46 | | breq2 5078 |
. . . . . . . 8
⊢ (𝐶 = 𝐵 → (𝐴 ≤ 𝐶 ↔ 𝐴 ≤ 𝐵)) |
47 | 45, 46 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐶 = 𝐵 → 𝐴 ≤ 𝐶)) |
48 | 40, 44, 47 | 3jaod 1427 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐴 ≤ 𝐶)) |
49 | 48 | exp31 420 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐶 ∈ ℝ* → (𝐴 ≤ 𝐵 → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐴 ≤ 𝐶)))) |
50 | 49 | 3impd 1347 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐴 ≤ 𝐶)) |
51 | | breq1 5077 |
. . . . . . . 8
⊢ (𝐶 = 𝐴 → (𝐶 ≤ 𝐵 ↔ 𝐴 ≤ 𝐵)) |
52 | 45, 51 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐶 = 𝐴 → 𝐶 ≤ 𝐵)) |
53 | | xrltle 12883 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐶 < 𝐵 → 𝐶 ≤ 𝐵)) |
54 | 53 | ancoms 459 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐶 < 𝐵 → 𝐶 ≤ 𝐵)) |
55 | 54 | adantld 491 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐶 ≤ 𝐵)) |
56 | 55 | adantll 711 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐶 ≤ 𝐵)) |
57 | 56 | adantr 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) → 𝐶 ≤ 𝐵)) |
58 | | xrleid 12885 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ*
→ 𝐵 ≤ 𝐵) |
59 | 58 | ad3antlr 728 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐵) |
60 | | breq1 5077 |
. . . . . . . 8
⊢ (𝐶 = 𝐵 → (𝐶 ≤ 𝐵 ↔ 𝐵 ≤ 𝐵)) |
61 | 59, 60 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐶 = 𝐵 → 𝐶 ≤ 𝐵)) |
62 | 52, 57, 61 | 3jaod 1427 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐶 ≤ 𝐵)) |
63 | 62 | exp31 420 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐶 ∈ ℝ* → (𝐴 ≤ 𝐵 → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐶 ≤ 𝐵)))) |
64 | 63 | 3impd 1347 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ≤ 𝐵)) |
65 | 36, 50, 64 | 3jcad 1128 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
66 | 34, 65 | impbid 211 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))) |
67 | 1, 66 | bitrd 278 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))) |