Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicc3 Structured version   Visualization version   GIF version

Theorem elicc3 36319
Description: An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
elicc3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))

Proof of Theorem elicc3
StepHypRef Expression
1 elicc1 13432 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 simp1 1136 . . . . 5 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ*)
32a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ*))
4 xrletr 13201 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐶𝐶𝐵) → 𝐴𝐵))
54exp5o 1355 . . . . . 6 (𝐴 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐶 → (𝐶𝐵𝐴𝐵)))))
65com23 86 . . . . 5 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐴𝐶 → (𝐶𝐵𝐴𝐵)))))
76imp5q 36314 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐴𝐵))
8 df-ne 2940 . . . . . . . . . 10 (𝐶𝐴 ↔ ¬ 𝐶 = 𝐴)
9 xrleltne 13188 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (𝐴 < 𝐶𝐶𝐴))
109biimprd 248 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (𝐶𝐴𝐴 < 𝐶))
118, 10biimtrrid 243 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
12113adant3r3 1184 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
1312adantlr 715 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
14 eqcom 2743 . . . . . . . . . . . . . 14 (𝐶 = 𝐵𝐵 = 𝐶)
1514necon3bbii 2987 . . . . . . . . . . . . 13 𝐶 = 𝐵𝐵𝐶)
16 xrleltne 13188 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (𝐶 < 𝐵𝐵𝐶))
1716biimprd 248 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (𝐵𝐶𝐶 < 𝐵))
1815, 17biimtrid 242 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
19183exp 1119 . . . . . . . . . . 11 (𝐶 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐶𝐵 → (¬ 𝐶 = 𝐵𝐶 < 𝐵))))
2019com12 32 . . . . . . . . . 10 (𝐵 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐶𝐵 → (¬ 𝐶 = 𝐵𝐶 < 𝐵))))
2120imp32 418 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
22213adantr2 1170 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
2322adantll 714 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
2413, 23anim12d 609 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)))
2524ex 412 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵))))
26 df-or 848 . . . . . 6 ((𝐶 = 𝐴 ∨ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
27 3orass 1089 . . . . . 6 ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) ↔ (𝐶 = 𝐴 ∨ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
28 pm5.6 1003 . . . . . . 7 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (¬ 𝐶 = 𝐴 → (𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵))))
29 orcom 870 . . . . . . . 8 ((𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵)) ↔ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))
3029imbi2i 336 . . . . . . 7 ((¬ 𝐶 = 𝐴 → (𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵))) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
3128, 30bitri 275 . . . . . 6 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
3226, 27, 313bitr4ri 304 . . . . 5 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))
3325, 32imbitrdi 251 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
343, 7, 333jcad 1129 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
35 simp1 1136 . . . . 5 ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ ℝ*)
3635a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ ℝ*))
37 xrleid 13194 . . . . . . . . 9 (𝐴 ∈ ℝ*𝐴𝐴)
3837ad3antrrr 730 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴𝐴)
39 breq2 5146 . . . . . . . 8 (𝐶 = 𝐴 → (𝐴𝐶𝐴𝐴))
4038, 39syl5ibrcom 247 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐴𝐴𝐶))
41 xrltle 13192 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶𝐴𝐶))
4241adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 < 𝐶𝐴𝐶))
4342adantllr 719 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 < 𝐶𝐴𝐶))
4443adantrd 491 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐴𝐶))
45 simpr 484 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴𝐵)
46 breq2 5146 . . . . . . . 8 (𝐶 = 𝐵 → (𝐴𝐶𝐴𝐵))
4745, 46syl5ibrcom 247 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐵𝐴𝐶))
4840, 44, 473jaod 1430 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐴𝐶))
4948exp31 419 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ ℝ* → (𝐴𝐵 → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐴𝐶))))
50493impd 1348 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐴𝐶))
51 breq1 5145 . . . . . . . 8 (𝐶 = 𝐴 → (𝐶𝐵𝐴𝐵))
5245, 51syl5ibrcom 247 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐴𝐶𝐵))
53 xrltle 13192 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 < 𝐵𝐶𝐵))
5453ancoms 458 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < 𝐵𝐶𝐵))
5554adantld 490 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
5655adantll 714 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
5756adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
58 xrleid 13194 . . . . . . . . 9 (𝐵 ∈ ℝ*𝐵𝐵)
5958ad3antlr 731 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵𝐵)
60 breq1 5145 . . . . . . . 8 (𝐶 = 𝐵 → (𝐶𝐵𝐵𝐵))
6159, 60syl5ibrcom 247 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐵𝐶𝐵))
6252, 57, 613jaod 1430 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐶𝐵))
6362exp31 419 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ ℝ* → (𝐴𝐵 → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐶𝐵))))
64633impd 1348 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶𝐵))
6536, 50, 643jcad 1129 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
6634, 65impbid 212 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
671, 66bitrd 279 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  (class class class)co 7432  *cxr 11295   < clt 11296  cle 11297  [,]cicc 13391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-pre-lttri 11230  ax-pre-lttrn 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-icc 13395
This theorem is referenced by:  ivthALT  36337
  Copyright terms: Public domain W3C validator