Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicc3 Structured version   Visualization version   GIF version

Theorem elicc3 35250
Description: An equivalent membership condition for closed intervals. (Contributed by Jeff Hankins, 14-Jul-2009.)
Assertion
Ref Expression
elicc3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))

Proof of Theorem elicc3
StepHypRef Expression
1 elicc1 13368 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
2 simp1 1137 . . . . 5 ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ*)
32a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ*))
4 xrletr 13137 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐶𝐶𝐵) → 𝐴𝐵))
54exp5o 1356 . . . . . 6 (𝐴 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐶 → (𝐶𝐵𝐴𝐵)))))
65com23 86 . . . . 5 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐴𝐶 → (𝐶𝐵𝐴𝐵)))))
76imp5q 35245 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → 𝐴𝐵))
8 df-ne 2942 . . . . . . . . . 10 (𝐶𝐴 ↔ ¬ 𝐶 = 𝐴)
9 xrleltne 13124 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (𝐴 < 𝐶𝐶𝐴))
109biimprd 247 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (𝐶𝐴𝐴 < 𝐶))
118, 10biimtrrid 242 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐴𝐶) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
12113adant3r3 1185 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
1312adantlr 714 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐴𝐴 < 𝐶))
14 eqcom 2740 . . . . . . . . . . . . . 14 (𝐶 = 𝐵𝐵 = 𝐶)
1514necon3bbii 2989 . . . . . . . . . . . . 13 𝐶 = 𝐵𝐵𝐶)
16 xrleltne 13124 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (𝐶 < 𝐵𝐵𝐶))
1716biimprd 247 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (𝐵𝐶𝐶 < 𝐵))
1815, 17biimtrid 241 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐶𝐵) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
19183exp 1120 . . . . . . . . . . 11 (𝐶 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐶𝐵 → (¬ 𝐶 = 𝐵𝐶 < 𝐵))))
2019com12 32 . . . . . . . . . 10 (𝐵 ∈ ℝ* → (𝐶 ∈ ℝ* → (𝐶𝐵 → (¬ 𝐶 = 𝐵𝐶 < 𝐵))))
2120imp32 420 . . . . . . . . 9 ((𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
22213adantr2 1171 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
2322adantll 713 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (¬ 𝐶 = 𝐵𝐶 < 𝐵))
2413, 23anim12d 610 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)))
2524ex 414 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵))))
26 df-or 847 . . . . . 6 ((𝐶 = 𝐴 ∨ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
27 3orass 1091 . . . . . 6 ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) ↔ (𝐶 = 𝐴 ∨ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
28 pm5.6 1001 . . . . . . 7 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (¬ 𝐶 = 𝐴 → (𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵))))
29 orcom 869 . . . . . . . 8 ((𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵)) ↔ ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))
3029imbi2i 336 . . . . . . 7 ((¬ 𝐶 = 𝐴 → (𝐶 = 𝐵 ∨ (𝐴 < 𝐶𝐶 < 𝐵))) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
3128, 30bitri 275 . . . . . 6 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (¬ 𝐶 = 𝐴 → ((𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
3226, 27, 313bitr4ri 304 . . . . 5 (((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) → (𝐴 < 𝐶𝐶 < 𝐵)) ↔ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))
3325, 32imbitrdi 250 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)))
343, 7, 333jcad 1130 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
35 simp1 1137 . . . . 5 ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ ℝ*)
3635a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ ℝ*))
37 xrleid 13130 . . . . . . . . 9 (𝐴 ∈ ℝ*𝐴𝐴)
3837ad3antrrr 729 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴𝐴)
39 breq2 5153 . . . . . . . 8 (𝐶 = 𝐴 → (𝐴𝐶𝐴𝐴))
4038, 39syl5ibrcom 246 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐴𝐴𝐶))
41 xrltle 13128 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶𝐴𝐶))
4241adantr 482 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 < 𝐶𝐴𝐶))
4342adantllr 718 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐴 < 𝐶𝐴𝐶))
4443adantrd 493 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐴𝐶))
45 simpr 486 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴𝐵)
46 breq2 5153 . . . . . . . 8 (𝐶 = 𝐵 → (𝐴𝐶𝐴𝐵))
4745, 46syl5ibrcom 246 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐵𝐴𝐶))
4840, 44, 473jaod 1429 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐴𝐶))
4948exp31 421 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ ℝ* → (𝐴𝐵 → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐴𝐶))))
50493impd 1349 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐴𝐶))
51 breq1 5152 . . . . . . . 8 (𝐶 = 𝐴 → (𝐶𝐵𝐴𝐵))
5245, 51syl5ibrcom 246 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐴𝐶𝐵))
53 xrltle 13128 . . . . . . . . . . 11 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 < 𝐵𝐶𝐵))
5453ancoms 460 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < 𝐵𝐶𝐵))
5554adantld 492 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
5655adantll 713 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
5756adantr 482 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴 < 𝐶𝐶 < 𝐵) → 𝐶𝐵))
58 xrleid 13130 . . . . . . . . 9 (𝐵 ∈ ℝ*𝐵𝐵)
5958ad3antlr 730 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐵𝐵)
60 breq1 5152 . . . . . . . 8 (𝐶 = 𝐵 → (𝐶𝐵𝐵𝐵))
6159, 60syl5ibrcom 246 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐶 = 𝐵𝐶𝐵))
6252, 57, 613jaod 1429 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐶𝐵))
6362exp31 421 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ ℝ* → (𝐴𝐵 → ((𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵) → 𝐶𝐵))))
64633impd 1349 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → 𝐶𝐵))
6536, 50, 643jcad 1130 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
6634, 65impbid 211 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
671, 66bitrd 279 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐵 ∧ (𝐶 = 𝐴 ∨ (𝐴 < 𝐶𝐶 < 𝐵) ∨ 𝐶 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  wne 2941   class class class wbr 5149  (class class class)co 7409  *cxr 11247   < clt 11248  cle 11249  [,]cicc 13327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-pre-lttri 11184  ax-pre-lttrn 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-icc 13331
This theorem is referenced by:  ivthALT  35268
  Copyright terms: Public domain W3C validator