| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version GIF version | ||
| Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4l 92 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 3 | 2 | 3imp 1110 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3imp2 1350 3impexp 1359 po2ne 5582 oprabidw 7441 oprabid 7442 wfrlem12OLD 8339 isinf 9273 isinfOLD 9274 infsupprpr 9523 axdc3lem4 10472 iccid 13412 difreicc 13506 fvf1tp 13811 relexpaddg 15077 issubg4 19133 rnglidlmcl 21182 reconn 24773 bcthlem2 25282 dvfsumrlim3 25997 ax5seg 28922 axcontlem4 28951 usgr2wlkneq 29743 frgrwopreg 30309 dfufd2lem 33569 cvmlift3lem4 35349 fscgr 36103 idinside 36107 brsegle 36131 seglecgr12im 36133 imp5q 36335 elicc3 36340 areacirclem1 37737 areacirclem2 37738 areacirclem4 37740 areacirc 37742 filbcmb 37769 fzmul 37770 islshpcv 39076 cvrat3 39466 4atexlem7 40099 relexpmulg 43701 gneispacess2 44137 iunconnlem2 44926 fmtnoprmfac1 47546 fmtnoprmfac2 47548 fpprwppr 47720 grimgrtri 47928 usgrgrtrirex 47929 grlimgrtri 47975 itsclc0xyqsol 48715 |
| Copyright terms: Public domain | W3C validator |