![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version GIF version |
Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4l 92 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
3 | 2 | 3imp 1111 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
4 | 3 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3imp2 1349 3impexp 1358 po2ne 5624 oprabidw 7479 oprabid 7480 wfrlem12OLD 8376 isinf 9323 isinfOLD 9324 infsupprpr 9573 axdc3lem4 10522 iccid 13452 difreicc 13544 fvf1tp 13840 relexpaddg 15102 issubg4 19185 rnglidlmcl 21249 reconn 24869 bcthlem2 25378 dvfsumrlim3 26094 ax5seg 28971 axcontlem4 29000 usgr2wlkneq 29792 frgrwopreg 30355 dfufd2lem 33542 cvmlift3lem4 35290 fscgr 36044 idinside 36048 brsegle 36072 seglecgr12im 36074 imp5q 36278 elicc3 36283 areacirclem1 37668 areacirclem2 37669 areacirclem4 37671 areacirc 37673 filbcmb 37700 fzmul 37701 islshpcv 39009 cvrat3 39399 4atexlem7 40032 relexpmulg 43672 gneispacess2 44108 iunconnlem2 44906 fmtnoprmfac1 47439 fmtnoprmfac2 47441 fpprwppr 47613 grimgrtri 47798 usgrgrtrirex 47799 grlimgrtri 47820 itsclc0xyqsol 48502 |
Copyright terms: Public domain | W3C validator |