| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version GIF version | ||
| Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4l 92 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 3 | 2 | 3imp 1111 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: 3imp2 1350 3impexp 1359 po2ne 5608 oprabidw 7462 oprabid 7463 wfrlem12OLD 8360 isinf 9296 isinfOLD 9297 infsupprpr 9544 axdc3lem4 10493 iccid 13432 difreicc 13524 fvf1tp 13829 relexpaddg 15092 issubg4 19163 rnglidlmcl 21226 reconn 24850 bcthlem2 25359 dvfsumrlim3 26074 ax5seg 28953 axcontlem4 28982 usgr2wlkneq 29776 frgrwopreg 30342 dfufd2lem 33577 cvmlift3lem4 35327 fscgr 36081 idinside 36085 brsegle 36109 seglecgr12im 36111 imp5q 36313 elicc3 36318 areacirclem1 37715 areacirclem2 37716 areacirclem4 37718 areacirc 37720 filbcmb 37747 fzmul 37748 islshpcv 39054 cvrat3 39444 4atexlem7 40077 relexpmulg 43723 gneispacess2 44159 iunconnlem2 44955 fmtnoprmfac1 47552 fmtnoprmfac2 47554 fpprwppr 47726 grimgrtri 47916 usgrgrtrirex 47917 grlimgrtri 47963 itsclc0xyqsol 48689 |
| Copyright terms: Public domain | W3C validator |