Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version GIF version |
Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4l 92 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
3 | 2 | 3imp 1110 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
4 | 3 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3imp2 1348 3impexp 1357 po2ne 5519 oprabidw 7306 oprabid 7307 wfrlem12OLD 8151 isinf 9036 infsupprpr 9263 axdc3lem4 10209 iccid 13124 difreicc 13216 relexpaddg 14764 issubg4 18774 reconn 23991 bcthlem2 24489 dvfsumrlim3 25197 ax5seg 27306 axcontlem4 27335 usgr2wlkneq 28124 frgrwopreg 28687 cvmlift3lem4 33284 fscgr 34382 idinside 34386 brsegle 34410 seglecgr12im 34412 imp5q 34501 elicc3 34506 areacirclem1 35865 areacirclem2 35866 areacirclem4 35868 areacirc 35870 filbcmb 35898 fzmul 35899 islshpcv 37067 cvrat3 37456 4atexlem7 38089 relexpmulg 41318 gneispacess2 41756 iunconnlem2 42555 fmtnoprmfac1 45017 fmtnoprmfac2 45019 fpprwppr 45191 itsclc0xyqsol 46114 |
Copyright terms: Public domain | W3C validator |