![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version GIF version |
Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4l 92 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
3 | 2 | 3imp 1112 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
4 | 3 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3imp2 1350 3impexp 1359 po2ne 5605 oprabidw 7440 oprabid 7441 wfrlem12OLD 8320 isinf 9260 isinfOLD 9261 infsupprpr 9499 axdc3lem4 10448 iccid 13369 difreicc 13461 relexpaddg 15000 issubg4 19025 reconn 24344 bcthlem2 24842 dvfsumrlim3 25550 ax5seg 28196 axcontlem4 28225 usgr2wlkneq 29013 frgrwopreg 29576 cvmlift3lem4 34313 fscgr 35052 idinside 35056 brsegle 35080 seglecgr12im 35082 imp5q 35197 elicc3 35202 areacirclem1 36576 areacirclem2 36577 areacirclem4 36579 areacirc 36581 filbcmb 36608 fzmul 36609 islshpcv 37923 cvrat3 38313 4atexlem7 38946 relexpmulg 42461 gneispacess2 42897 iunconnlem2 43696 fmtnoprmfac1 46233 fmtnoprmfac2 46235 fpprwppr 46407 rnglidlmcl 46748 itsclc0xyqsol 47454 |
Copyright terms: Public domain | W3C validator |