| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version GIF version | ||
| Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4l 92 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 3 | 2 | 3imp 1110 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3imp2 1350 3impexp 1359 po2ne 5545 oprabidw 7385 oprabid 7386 isinf 9158 infsupprpr 9399 axdc3lem4 10353 iccid 13294 difreicc 13388 fvf1tp 13697 relexpaddg 14964 issubg4 19062 rnglidlmcl 21157 reconn 24747 bcthlem2 25255 dvfsumrlim3 25970 ax5seg 28920 axcontlem4 28949 usgr2wlkneq 29738 frgrwopreg 30307 dfufd2lem 33523 cvmlift3lem4 35389 fscgr 36147 idinside 36151 brsegle 36175 seglecgr12im 36177 imp5q 36379 elicc3 36384 areacirclem1 37771 areacirclem2 37772 areacirclem4 37774 areacirc 37776 filbcmb 37803 fzmul 37804 islshpcv 39175 cvrat3 39564 4atexlem7 40197 relexpmulg 43830 gneispacess2 44266 iunconnlem2 45054 fmtnoprmfac1 47692 fmtnoprmfac2 47694 fpprwppr 47866 grimgrtri 48076 usgrgrtrirex 48077 grlimgrtri 48130 itsclc0xyqsol 48896 |
| Copyright terms: Public domain | W3C validator |