| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version GIF version | ||
| Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4l 92 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 3 | 2 | 3imp 1110 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3imp2 1350 3impexp 1359 po2ne 5562 oprabidw 7418 oprabid 7419 isinf 9207 isinfOLD 9208 infsupprpr 9457 axdc3lem4 10406 iccid 13351 difreicc 13445 fvf1tp 13751 relexpaddg 15019 issubg4 19077 rnglidlmcl 21126 reconn 24717 bcthlem2 25225 dvfsumrlim3 25940 ax5seg 28865 axcontlem4 28894 usgr2wlkneq 29686 frgrwopreg 30252 dfufd2lem 33520 cvmlift3lem4 35309 fscgr 36068 idinside 36072 brsegle 36096 seglecgr12im 36098 imp5q 36300 elicc3 36305 areacirclem1 37702 areacirclem2 37703 areacirclem4 37705 areacirc 37707 filbcmb 37734 fzmul 37735 islshpcv 39046 cvrat3 39436 4atexlem7 40069 relexpmulg 43699 gneispacess2 44135 iunconnlem2 44924 fmtnoprmfac1 47566 fmtnoprmfac2 47568 fpprwppr 47740 grimgrtri 47948 usgrgrtrirex 47949 grlimgrtri 47995 itsclc0xyqsol 48757 |
| Copyright terms: Public domain | W3C validator |