| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version GIF version | ||
| Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4l 92 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 3 | 2 | 3imp 1110 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3imp2 1350 3impexp 1359 po2ne 5547 oprabidw 7384 oprabid 7385 isinf 9165 isinfOLD 9166 infsupprpr 9415 axdc3lem4 10366 iccid 13311 difreicc 13405 fvf1tp 13711 relexpaddg 14978 issubg4 19042 rnglidlmcl 21141 reconn 24733 bcthlem2 25241 dvfsumrlim3 25956 ax5seg 28901 axcontlem4 28930 usgr2wlkneq 29719 frgrwopreg 30285 dfufd2lem 33499 cvmlift3lem4 35297 fscgr 36056 idinside 36060 brsegle 36084 seglecgr12im 36086 imp5q 36288 elicc3 36293 areacirclem1 37690 areacirclem2 37691 areacirclem4 37693 areacirc 37695 filbcmb 37722 fzmul 37723 islshpcv 39034 cvrat3 39424 4atexlem7 40057 relexpmulg 43686 gneispacess2 44122 iunconnlem2 44911 fmtnoprmfac1 47553 fmtnoprmfac2 47555 fpprwppr 47727 grimgrtri 47937 usgrgrtrirex 47938 grlimgrtri 47991 itsclc0xyqsol 48757 |
| Copyright terms: Public domain | W3C validator |