Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version GIF version |
Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4l 92 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
3 | 2 | 3imp 1109 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
4 | 3 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3imp2 1347 3impexp 1356 po2ne 5510 oprabidw 7286 oprabid 7287 wfrlem12OLD 8122 isinf 8965 infsupprpr 9193 axdc3lem4 10140 iccid 13053 difreicc 13145 relexpaddg 14692 issubg4 18689 reconn 23897 bcthlem2 24394 dvfsumrlim3 25102 ax5seg 27209 axcontlem4 27238 usgr2wlkneq 28025 frgrwopreg 28588 cvmlift3lem4 33184 fscgr 34309 idinside 34313 brsegle 34337 seglecgr12im 34339 imp5q 34428 elicc3 34433 areacirclem1 35792 areacirclem2 35793 areacirclem4 35795 areacirc 35797 filbcmb 35825 fzmul 35826 islshpcv 36994 cvrat3 37383 4atexlem7 38016 relexpmulg 41207 gneispacess2 41645 iunconnlem2 42444 fmtnoprmfac1 44905 fmtnoprmfac2 44907 fpprwppr 45079 itsclc0xyqsol 46002 |
Copyright terms: Public domain | W3C validator |