| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version GIF version | ||
| Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4l 92 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 3 | 2 | 3imp 1110 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3imp2 1350 3impexp 1359 po2ne 5540 oprabidw 7377 oprabid 7378 isinf 9149 infsupprpr 9390 axdc3lem4 10344 iccid 13290 difreicc 13384 fvf1tp 13693 relexpaddg 14960 issubg4 19058 rnglidlmcl 21154 reconn 24745 bcthlem2 25253 dvfsumrlim3 25968 ax5seg 28917 axcontlem4 28946 usgr2wlkneq 29735 frgrwopreg 30301 dfufd2lem 33512 cvmlift3lem4 35364 fscgr 36120 idinside 36124 brsegle 36148 seglecgr12im 36150 imp5q 36352 elicc3 36357 areacirclem1 37754 areacirclem2 37755 areacirclem4 37757 areacirc 37759 filbcmb 37786 fzmul 37787 islshpcv 39098 cvrat3 39487 4atexlem7 40120 relexpmulg 43749 gneispacess2 44185 iunconnlem2 44973 fmtnoprmfac1 47602 fmtnoprmfac2 47604 fpprwppr 47776 grimgrtri 47986 usgrgrtrirex 47987 grlimgrtri 48040 itsclc0xyqsol 48806 |
| Copyright terms: Public domain | W3C validator |