MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impd Structured version   Visualization version   GIF version

Theorem 3impd 1349
Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3imp1.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
3impd (𝜑 → ((𝜓𝜒𝜃) → 𝜏))

Proof of Theorem 3impd
StepHypRef Expression
1 3imp1.1 . . . 4 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21com4l 92 . . 3 (𝜓 → (𝜒 → (𝜃 → (𝜑𝜏))))
323imp 1110 . 2 ((𝜓𝜒𝜃) → (𝜑𝜏))
43com12 32 1 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3imp2  1350  3impexp  1359  po2ne  5565  oprabidw  7421  oprabid  7422  isinf  9214  isinfOLD  9215  infsupprpr  9464  axdc3lem4  10413  iccid  13358  difreicc  13452  fvf1tp  13758  relexpaddg  15026  issubg4  19084  rnglidlmcl  21133  reconn  24724  bcthlem2  25232  dvfsumrlim3  25947  ax5seg  28872  axcontlem4  28901  usgr2wlkneq  29693  frgrwopreg  30259  dfufd2lem  33527  cvmlift3lem4  35316  fscgr  36075  idinside  36079  brsegle  36103  seglecgr12im  36105  imp5q  36307  elicc3  36312  areacirclem1  37709  areacirclem2  37710  areacirclem4  37712  areacirc  37714  filbcmb  37741  fzmul  37742  islshpcv  39053  cvrat3  39443  4atexlem7  40076  relexpmulg  43706  gneispacess2  44142  iunconnlem2  44931  fmtnoprmfac1  47570  fmtnoprmfac2  47572  fpprwppr  47744  grimgrtri  47952  usgrgrtrirex  47953  grlimgrtri  47999  itsclc0xyqsol  48761
  Copyright terms: Public domain W3C validator