| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version GIF version | ||
| Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| 3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
| Ref | Expression |
|---|---|
| 3impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp1.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
| 2 | 1 | com4l 92 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
| 3 | 2 | 3imp 1110 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3imp2 1350 3impexp 1359 po2ne 5565 oprabidw 7421 oprabid 7422 isinf 9214 isinfOLD 9215 infsupprpr 9464 axdc3lem4 10413 iccid 13358 difreicc 13452 fvf1tp 13758 relexpaddg 15026 issubg4 19084 rnglidlmcl 21133 reconn 24724 bcthlem2 25232 dvfsumrlim3 25947 ax5seg 28872 axcontlem4 28901 usgr2wlkneq 29693 frgrwopreg 30259 dfufd2lem 33527 cvmlift3lem4 35316 fscgr 36075 idinside 36079 brsegle 36103 seglecgr12im 36105 imp5q 36307 elicc3 36312 areacirclem1 37709 areacirclem2 37710 areacirclem4 37712 areacirc 37714 filbcmb 37741 fzmul 37742 islshpcv 39053 cvrat3 39443 4atexlem7 40076 relexpmulg 43706 gneispacess2 44142 iunconnlem2 44931 fmtnoprmfac1 47570 fmtnoprmfac2 47572 fpprwppr 47744 grimgrtri 47952 usgrgrtrirex 47953 grlimgrtri 47999 itsclc0xyqsol 48761 |
| Copyright terms: Public domain | W3C validator |