Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3impd | Structured version Visualization version GIF version |
Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
Ref | Expression |
---|---|
3imp1.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
3impd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp1.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | com4l 92 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜑 → 𝜏)))) |
3 | 2 | 3imp 1110 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 → 𝜏)) |
4 | 3 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3imp2 1348 3impexp 1357 po2ne 5542 oprabidw 7360 oprabid 7361 wfrlem12OLD 8213 isinf 9117 isinfOLD 9118 infsupprpr 9353 axdc3lem4 10302 iccid 13217 difreicc 13309 relexpaddg 14855 issubg4 18862 reconn 24089 bcthlem2 24587 dvfsumrlim3 25295 ax5seg 27536 axcontlem4 27565 usgr2wlkneq 28353 frgrwopreg 28916 cvmlift3lem4 33524 fscgr 34473 idinside 34477 brsegle 34501 seglecgr12im 34503 imp5q 34592 elicc3 34597 areacirclem1 35963 areacirclem2 35964 areacirclem4 35966 areacirc 35968 filbcmb 35996 fzmul 35997 islshpcv 37313 cvrat3 37703 4atexlem7 38336 relexpmulg 41628 gneispacess2 42066 iunconnlem2 42865 fmtnoprmfac1 45357 fmtnoprmfac2 45359 fpprwppr 45531 itsclc0xyqsol 46454 |
Copyright terms: Public domain | W3C validator |