Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intn3an1d | Structured version Visualization version GIF version |
Description: Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
intn3and.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
intn3an1d | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intn3and.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | simp1 1134 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
3 | 1, 2 | nsyl 140 | 1 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: frxp2 33718 frxp3 33724 |
Copyright terms: Public domain | W3C validator |