MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intn3an1d Structured version   Visualization version   GIF version

Theorem intn3an1d 1477
Description: Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypothesis
Ref Expression
intn3and.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
intn3an1d (𝜑 → ¬ (𝜓𝜒𝜃))

Proof of Theorem intn3an1d
StepHypRef Expression
1 intn3and.1 . 2 (𝜑 → ¬ 𝜓)
2 simp1 1134 . 2 ((𝜓𝜒𝜃) → 𝜓)
31, 2nsyl 140 1 (𝜑 → ¬ (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  frxp2  33718  frxp3  33724
  Copyright terms: Public domain W3C validator