| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | frxp3.1 | . . . . . . 7
⊢ (𝜑 → 𝑅 Fr 𝐴) | 
| 2 | 1 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → 𝑅 Fr 𝐴) | 
| 3 |  | dmss 5912 | . . . . . . . . . 10
⊢ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) → dom 𝑠 ⊆ dom ((𝐴 × 𝐵) × 𝐶)) | 
| 4 | 3 | ad2antrl 728 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ⊆ dom ((𝐴 × 𝐵) × 𝐶)) | 
| 5 |  | dmxpss 6190 | . . . . . . . . 9
⊢ dom
((𝐴 × 𝐵) × 𝐶) ⊆ (𝐴 × 𝐵) | 
| 6 | 4, 5 | sstrdi 3995 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ⊆ (𝐴 × 𝐵)) | 
| 7 |  | dmss 5912 | . . . . . . . 8
⊢ (dom
𝑠 ⊆ (𝐴 × 𝐵) → dom dom 𝑠 ⊆ dom (𝐴 × 𝐵)) | 
| 8 | 6, 7 | syl 17 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → dom dom 𝑠 ⊆ dom (𝐴 × 𝐵)) | 
| 9 |  | dmxpss 6190 | . . . . . . 7
⊢ dom
(𝐴 × 𝐵) ⊆ 𝐴 | 
| 10 | 8, 9 | sstrdi 3995 | . . . . . 6
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → dom dom 𝑠 ⊆ 𝐴) | 
| 11 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑠 ∈ V | 
| 12 | 11 | dmex 7932 | . . . . . . . 8
⊢ dom 𝑠 ∈ V | 
| 13 | 12 | dmex 7932 | . . . . . . 7
⊢ dom dom
𝑠 ∈ V | 
| 14 | 13 | a1i 11 | . . . . . 6
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → dom dom 𝑠 ∈ V) | 
| 15 |  | relxp 5702 | . . . . . . . . . . . . 13
⊢ Rel
((𝐴 × 𝐵) × 𝐶) | 
| 16 |  | relss 5790 | . . . . . . . . . . . . 13
⊢ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) → (Rel ((𝐴 × 𝐵) × 𝐶) → Rel 𝑠)) | 
| 17 | 15, 16 | mpi 20 | . . . . . . . . . . . 12
⊢ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) → Rel 𝑠) | 
| 18 | 17 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶)) → Rel 𝑠) | 
| 19 |  | reldm0 5937 | . . . . . . . . . . 11
⊢ (Rel
𝑠 → (𝑠 = ∅ ↔ dom 𝑠 = ∅)) | 
| 20 | 18, 19 | syl 17 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶)) → (𝑠 = ∅ ↔ dom 𝑠 = ∅)) | 
| 21 |  | relxp 5702 | . . . . . . . . . . . . . 14
⊢ Rel
(𝐴 × 𝐵) | 
| 22 |  | relss 5790 | . . . . . . . . . . . . . 14
⊢ (dom
((𝐴 × 𝐵) × 𝐶) ⊆ (𝐴 × 𝐵) → (Rel (𝐴 × 𝐵) → Rel dom ((𝐴 × 𝐵) × 𝐶))) | 
| 23 | 5, 21, 22 | mp2 9 | . . . . . . . . . . . . 13
⊢ Rel dom
((𝐴 × 𝐵) × 𝐶) | 
| 24 |  | relss 5790 | . . . . . . . . . . . . 13
⊢ (dom
𝑠 ⊆ dom ((𝐴 × 𝐵) × 𝐶) → (Rel dom ((𝐴 × 𝐵) × 𝐶) → Rel dom 𝑠)) | 
| 25 | 3, 23, 24 | mpisyl 21 | . . . . . . . . . . . 12
⊢ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) → Rel dom 𝑠) | 
| 26 | 25 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶)) → Rel dom 𝑠) | 
| 27 |  | reldm0 5937 | . . . . . . . . . . 11
⊢ (Rel dom
𝑠 → (dom 𝑠 = ∅ ↔ dom dom 𝑠 = ∅)) | 
| 28 | 26, 27 | syl 17 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶)) → (dom 𝑠 = ∅ ↔ dom dom 𝑠 = ∅)) | 
| 29 | 20, 28 | bitrd 279 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶)) → (𝑠 = ∅ ↔ dom dom 𝑠 = ∅)) | 
| 30 | 29 | necon3bid 2984 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶)) → (𝑠 ≠ ∅ ↔ dom dom 𝑠 ≠ ∅)) | 
| 31 | 30 | biimpa 476 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶)) ∧ 𝑠 ≠ ∅) → dom dom 𝑠 ≠ ∅) | 
| 32 | 31 | anasss 466 | . . . . . 6
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → dom dom 𝑠 ≠ ∅) | 
| 33 | 2, 10, 14, 32 | frd 5640 | . . . . 5
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → ∃𝑎 ∈ dom dom 𝑠∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎) | 
| 34 |  | frxp3.2 | . . . . . . . 8
⊢ (𝜑 → 𝑆 Fr 𝐵) | 
| 35 | 34 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) → 𝑆 Fr 𝐵) | 
| 36 |  | imassrn 6088 | . . . . . . . . 9
⊢ (dom
𝑠 “ {𝑎}) ⊆ ran dom 𝑠 | 
| 37 |  | rnss 5949 | . . . . . . . . . . 11
⊢ (dom
𝑠 ⊆ (𝐴 × 𝐵) → ran dom 𝑠 ⊆ ran (𝐴 × 𝐵)) | 
| 38 | 6, 37 | syl 17 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → ran dom 𝑠 ⊆ ran (𝐴 × 𝐵)) | 
| 39 |  | rnxpss 6191 | . . . . . . . . . 10
⊢ ran
(𝐴 × 𝐵) ⊆ 𝐵 | 
| 40 | 38, 39 | sstrdi 3995 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → ran dom 𝑠 ⊆ 𝐵) | 
| 41 | 36, 40 | sstrid 3994 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → (dom 𝑠 “ {𝑎}) ⊆ 𝐵) | 
| 42 | 41 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) → (dom 𝑠 “ {𝑎}) ⊆ 𝐵) | 
| 43 | 12 | imaex 7937 | . . . . . . . 8
⊢ (dom
𝑠 “ {𝑎}) ∈ V | 
| 44 | 43 | a1i 11 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) → (dom 𝑠 “ {𝑎}) ∈ V) | 
| 45 |  | imadisj 6097 | . . . . . . . . . . 11
⊢ ((dom
𝑠 “ {𝑎}) = ∅ ↔ (dom dom
𝑠 ∩ {𝑎}) = ∅) | 
| 46 |  | disjsn 4710 | . . . . . . . . . . 11
⊢ ((dom dom
𝑠 ∩ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom dom 𝑠) | 
| 47 | 45, 46 | bitri 275 | . . . . . . . . . 10
⊢ ((dom
𝑠 “ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom dom 𝑠) | 
| 48 | 47 | necon2abii 2990 | . . . . . . . . 9
⊢ (𝑎 ∈ dom dom 𝑠 ↔ (dom 𝑠 “ {𝑎}) ≠ ∅) | 
| 49 | 48 | biimpi 216 | . . . . . . . 8
⊢ (𝑎 ∈ dom dom 𝑠 → (dom 𝑠 “ {𝑎}) ≠ ∅) | 
| 50 | 49 | ad2antrl 728 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) → (dom 𝑠 “ {𝑎}) ≠ ∅) | 
| 51 | 35, 42, 44, 50 | frd 5640 | . . . . . 6
⊢ (((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) → ∃𝑏 ∈ (dom 𝑠 “ {𝑎})∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏) | 
| 52 |  | frxp3.3 | . . . . . . . . 9
⊢ (𝜑 → 𝑇 Fr 𝐶) | 
| 53 | 52 | ad3antrrr 730 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) → 𝑇 Fr 𝐶) | 
| 54 |  | imassrn 6088 | . . . . . . . . . 10
⊢ (𝑠 “ {〈𝑎, 𝑏〉}) ⊆ ran 𝑠 | 
| 55 |  | rnss 5949 | . . . . . . . . . . . 12
⊢ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) → ran 𝑠 ⊆ ran ((𝐴 × 𝐵) × 𝐶)) | 
| 56 | 55 | ad2antrl 728 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → ran 𝑠 ⊆ ran ((𝐴 × 𝐵) × 𝐶)) | 
| 57 |  | rnxpss 6191 | . . . . . . . . . . 11
⊢ ran
((𝐴 × 𝐵) × 𝐶) ⊆ 𝐶 | 
| 58 | 56, 57 | sstrdi 3995 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → ran 𝑠 ⊆ 𝐶) | 
| 59 | 54, 58 | sstrid 3994 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → (𝑠 “ {〈𝑎, 𝑏〉}) ⊆ 𝐶) | 
| 60 | 59 | ad2antrr 726 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) → (𝑠 “ {〈𝑎, 𝑏〉}) ⊆ 𝐶) | 
| 61 | 11 | imaex 7937 | . . . . . . . . 9
⊢ (𝑠 “ {〈𝑎, 𝑏〉}) ∈ V | 
| 62 | 61 | a1i 11 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) → (𝑠 “ {〈𝑎, 𝑏〉}) ∈ V) | 
| 63 |  | simprl 770 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) → 𝑏 ∈ (dom 𝑠 “ {𝑎})) | 
| 64 |  | vex 3483 | . . . . . . . . . . 11
⊢ 𝑎 ∈ V | 
| 65 |  | vex 3483 | . . . . . . . . . . 11
⊢ 𝑏 ∈ V | 
| 66 | 64, 65 | elimasn 6107 | . . . . . . . . . 10
⊢ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ↔ 〈𝑎, 𝑏〉 ∈ dom 𝑠) | 
| 67 | 63, 66 | sylib 218 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) → 〈𝑎, 𝑏〉 ∈ dom 𝑠) | 
| 68 |  | imadisj 6097 | . . . . . . . . . . 11
⊢ ((𝑠 “ {〈𝑎, 𝑏〉}) = ∅ ↔ (dom 𝑠 ∩ {〈𝑎, 𝑏〉}) = ∅) | 
| 69 |  | disjsn 4710 | . . . . . . . . . . 11
⊢ ((dom
𝑠 ∩ {〈𝑎, 𝑏〉}) = ∅ ↔ ¬ 〈𝑎, 𝑏〉 ∈ dom 𝑠) | 
| 70 | 68, 69 | bitri 275 | . . . . . . . . . 10
⊢ ((𝑠 “ {〈𝑎, 𝑏〉}) = ∅ ↔ ¬ 〈𝑎, 𝑏〉 ∈ dom 𝑠) | 
| 71 | 70 | necon2abii 2990 | . . . . . . . . 9
⊢
(〈𝑎, 𝑏〉 ∈ dom 𝑠 ↔ (𝑠 “ {〈𝑎, 𝑏〉}) ≠ ∅) | 
| 72 | 67, 71 | sylib 218 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) → (𝑠 “ {〈𝑎, 𝑏〉}) ≠ ∅) | 
| 73 | 53, 60, 62, 72 | frd 5640 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) → ∃𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉})∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐) | 
| 74 |  | df-ot 4634 | . . . . . . . . 9
⊢
〈𝑎, 𝑏, 𝑐〉 = 〈〈𝑎, 𝑏〉, 𝑐〉 | 
| 75 |  | simprl 770 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) → 𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉})) | 
| 76 |  | opex 5468 | . . . . . . . . . . 11
⊢
〈𝑎, 𝑏〉 ∈ V | 
| 77 |  | vex 3483 | . . . . . . . . . . 11
⊢ 𝑐 ∈ V | 
| 78 | 76, 77 | elimasn 6107 | . . . . . . . . . 10
⊢ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ↔ 〈〈𝑎, 𝑏〉, 𝑐〉 ∈ 𝑠) | 
| 79 | 75, 78 | sylib 218 | . . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) → 〈〈𝑎, 𝑏〉, 𝑐〉 ∈ 𝑠) | 
| 80 | 74, 79 | eqeltrid 2844 | . . . . . . . 8
⊢
(((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) → 〈𝑎, 𝑏, 𝑐〉 ∈ 𝑠) | 
| 81 |  | simplrl 776 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) → 𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶)) | 
| 82 | 81 | ad2antrr 726 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) → 𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶)) | 
| 83 |  | el2xpss 8063 | . . . . . . . . . . . 12
⊢ ((𝑞 ∈ 𝑠 ∧ 𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶)) → ∃𝑔∃ℎ∃𝑖 𝑞 = 〈𝑔, ℎ, 𝑖〉) | 
| 84 | 83 | ancoms 458 | . . . . . . . . . . 11
⊢ ((𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑞 ∈ 𝑠) → ∃𝑔∃ℎ∃𝑖 𝑞 = 〈𝑔, ℎ, 𝑖〉) | 
| 85 | 82, 84 | sylan 580 | . . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 𝑞 ∈ 𝑠) → ∃𝑔∃ℎ∃𝑖 𝑞 = 〈𝑔, ℎ, 𝑖〉) | 
| 86 |  | df-ne 2940 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ≠ 𝑐 ↔ ¬ 𝑖 = 𝑐) | 
| 87 | 86 | con2bii 357 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑐 ↔ ¬ 𝑖 ≠ 𝑐) | 
| 88 | 87 | biimpi 216 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑐 → ¬ 𝑖 ≠ 𝑐) | 
| 89 | 88 | intnand 488 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑐 → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ 𝑖 ≠ 𝑐)) | 
| 90 | 89 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) ∧ 𝑖 = 𝑐) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ 𝑖 ≠ 𝑐)) | 
| 91 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓 = 𝑖 → (𝑓𝑇𝑐 ↔ 𝑖𝑇𝑐)) | 
| 92 | 91 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 = 𝑖 → (¬ 𝑓𝑇𝑐 ↔ ¬ 𝑖𝑇𝑐)) | 
| 93 |  | simplrr 777 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) → ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐) | 
| 94 | 93 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) ∧ 𝑖 ≠ 𝑐) → ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐) | 
| 95 |  | df-ot 4634 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
〈𝑎, 𝑏, 𝑖〉 = 〈〈𝑎, 𝑏〉, 𝑖〉 | 
| 96 |  | simplr 768 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) ∧ 𝑖 ≠ 𝑐) → 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) | 
| 97 | 95, 96 | eqeltrrid 2845 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) ∧ 𝑖 ≠ 𝑐) → 〈〈𝑎, 𝑏〉, 𝑖〉 ∈ 𝑠) | 
| 98 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑖 ∈ V | 
| 99 | 76, 98 | elimasn 6107 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ↔ 〈〈𝑎, 𝑏〉, 𝑖〉 ∈ 𝑠) | 
| 100 | 97, 99 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) ∧ 𝑖 ≠ 𝑐) → 𝑖 ∈ (𝑠 “ {〈𝑎, 𝑏〉})) | 
| 101 | 92, 94, 100 | rspcdva 3622 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) ∧ 𝑖 ≠ 𝑐) → ¬ 𝑖𝑇𝑐) | 
| 102 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) ∧ 𝑖 ≠ 𝑐) → 𝑖 ≠ 𝑐) | 
| 103 | 102 | neneqd 2944 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) ∧ 𝑖 ≠ 𝑐) → ¬ 𝑖 = 𝑐) | 
| 104 |  | ioran 985 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
(𝑖𝑇𝑐 ∨ 𝑖 = 𝑐) ↔ (¬ 𝑖𝑇𝑐 ∧ ¬ 𝑖 = 𝑐)) | 
| 105 | 101, 103,
104 | sylanbrc 583 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) ∧ 𝑖 ≠ 𝑐) → ¬ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) | 
| 106 | 105 | intn3an3d 1482 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) ∧ 𝑖 ≠ 𝑐) → ¬ ((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐))) | 
| 107 | 106 | intnanrd 489 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) ∧ 𝑖 ≠ 𝑐) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ 𝑖 ≠ 𝑐)) | 
| 108 | 90, 107 | pm2.61dane 3028 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ 𝑖 ≠ 𝑐)) | 
| 109 |  | oteq2 4882 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ = 𝑏 → 〈𝑎, ℎ, 𝑖〉 = 〈𝑎, 𝑏, 𝑖〉) | 
| 110 | 109 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = 𝑏 → (〈𝑎, ℎ, 𝑖〉 ∈ 𝑠 ↔ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠)) | 
| 111 | 110 | anbi2d 630 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = 𝑏 → ((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) ↔ (((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠))) | 
| 112 |  | neeq1 3002 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ = 𝑏 → (ℎ ≠ 𝑏 ↔ 𝑏 ≠ 𝑏)) | 
| 113 | 112 | orbi1d 916 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (ℎ = 𝑏 → ((ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐) ↔ (𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) | 
| 114 |  | neirr 2948 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢  ¬
𝑏 ≠ 𝑏 | 
| 115 |  | orel1 888 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
𝑏 ≠ 𝑏 → ((𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐) → 𝑖 ≠ 𝑐)) | 
| 116 | 114, 115 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐) → 𝑖 ≠ 𝑐) | 
| 117 |  | olc 868 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ≠ 𝑐 → (𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)) | 
| 118 | 116, 117 | impbii 209 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑏 ≠ 𝑏 ∨ 𝑖 ≠ 𝑐) ↔ 𝑖 ≠ 𝑐) | 
| 119 | 113, 118 | bitrdi 287 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ = 𝑏 → ((ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐) ↔ 𝑖 ≠ 𝑐)) | 
| 120 | 119 | anbi2d 630 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = 𝑏 → ((((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)) ↔ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ 𝑖 ≠ 𝑐))) | 
| 121 | 120 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = 𝑏 → (¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)) ↔ ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ 𝑖 ≠ 𝑐))) | 
| 122 | 111, 121 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = 𝑏 → (((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) ↔ ((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, 𝑏, 𝑖〉 ∈ 𝑠) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ 𝑖 ≠ 𝑐)))) | 
| 123 | 108, 122 | mpbiri 258 | . . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝑏 → ((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)))) | 
| 124 | 123 | impcom 407 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) ∧ ℎ = 𝑏) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) | 
| 125 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑒 = ℎ → (𝑒𝑆𝑏 ↔ ℎ𝑆𝑏)) | 
| 126 | 125 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 = ℎ → (¬ 𝑒𝑆𝑏 ↔ ¬ ℎ𝑆𝑏)) | 
| 127 |  | simplrr 777 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) → ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏) | 
| 128 | 127 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) ∧ ℎ ≠ 𝑏) → ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏) | 
| 129 |  | df-ot 4634 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
〈𝑎, ℎ, 𝑖〉 = 〈〈𝑎, ℎ〉, 𝑖〉 | 
| 130 |  | simplr 768 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) ∧ ℎ ≠ 𝑏) → 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) | 
| 131 | 129, 130 | eqeltrrid 2845 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) ∧ ℎ ≠ 𝑏) → 〈〈𝑎, ℎ〉, 𝑖〉 ∈ 𝑠) | 
| 132 |  | opex 5468 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
〈𝑎, ℎ〉 ∈ V | 
| 133 | 132, 98 | opeldm 5917 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(〈〈𝑎,
ℎ〉, 𝑖〉 ∈ 𝑠 → 〈𝑎, ℎ〉 ∈ dom 𝑠) | 
| 134 | 131, 133 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) ∧ ℎ ≠ 𝑏) → 〈𝑎, ℎ〉 ∈ dom 𝑠) | 
| 135 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ℎ ∈ V | 
| 136 | 64, 135 | elimasn 6107 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ ∈ (dom 𝑠 “ {𝑎}) ↔ 〈𝑎, ℎ〉 ∈ dom 𝑠) | 
| 137 | 134, 136 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) ∧ ℎ ≠ 𝑏) → ℎ ∈ (dom 𝑠 “ {𝑎})) | 
| 138 | 126, 128,
137 | rspcdva 3622 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) ∧ ℎ ≠ 𝑏) → ¬ ℎ𝑆𝑏) | 
| 139 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) ∧ ℎ ≠ 𝑏) → ℎ ≠ 𝑏) | 
| 140 | 139 | neneqd 2944 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) ∧ ℎ ≠ 𝑏) → ¬ ℎ = 𝑏) | 
| 141 |  | ioran 985 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
(ℎ𝑆𝑏 ∨ ℎ = 𝑏) ↔ (¬ ℎ𝑆𝑏 ∧ ¬ ℎ = 𝑏)) | 
| 142 | 138, 140,
141 | sylanbrc 583 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) ∧ ℎ ≠ 𝑏) → ¬ (ℎ𝑆𝑏 ∨ ℎ = 𝑏)) | 
| 143 | 142 | intn3an2d 1481 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) ∧ ℎ ≠ 𝑏) → ¬ ((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐))) | 
| 144 | 143 | intnanrd 489 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) ∧ ℎ ≠ 𝑏) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) | 
| 145 | 124, 144 | pm2.61dane 3028 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) | 
| 146 |  | oteq1 4881 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = 𝑎 → 〈𝑔, ℎ, 𝑖〉 = 〈𝑎, ℎ, 𝑖〉) | 
| 147 | 146 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = 𝑎 → (〈𝑔, ℎ, 𝑖〉 ∈ 𝑠 ↔ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠)) | 
| 148 | 147 | anbi2d 630 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝑎 → ((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) ↔ (((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠))) | 
| 149 |  | neeq1 3002 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔 = 𝑎 → (𝑔 ≠ 𝑎 ↔ 𝑎 ≠ 𝑎)) | 
| 150 |  | biidd 262 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔 = 𝑎 → (ℎ ≠ 𝑏 ↔ ℎ ≠ 𝑏)) | 
| 151 |  | biidd 262 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔 = 𝑎 → (𝑖 ≠ 𝑐 ↔ 𝑖 ≠ 𝑐)) | 
| 152 | 149, 150,
151 | 3orbi123d 1436 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔 = 𝑎 → ((𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐) ↔ (𝑎 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) | 
| 153 |  | 3orass 1089 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑎 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐) ↔ (𝑎 ≠ 𝑎 ∨ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) | 
| 154 |  | neirr 2948 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢  ¬
𝑎 ≠ 𝑎 | 
| 155 |  | orel1 888 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑎 ≠ 𝑎 → ((𝑎 ≠ 𝑎 ∨ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)) → (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) | 
| 156 | 154, 155 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑎 ≠ 𝑎 ∨ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)) → (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)) | 
| 157 |  | olc 868 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐) → (𝑎 ≠ 𝑎 ∨ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) | 
| 158 | 156, 157 | impbii 209 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑎 ≠ 𝑎 ∨ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)) ↔ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)) | 
| 159 | 153, 158 | bitri 275 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐) ↔ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)) | 
| 160 | 152, 159 | bitrdi 287 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = 𝑎 → ((𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐) ↔ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) | 
| 161 | 160 | anbi2d 630 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = 𝑎 → ((((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)) ↔ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)))) | 
| 162 | 161 | notbid 318 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝑎 → (¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)) ↔ ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)))) | 
| 163 | 148, 162 | imbi12d 344 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝑎 → (((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) ↔ ((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑎, ℎ, 𝑖〉 ∈ 𝑠) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))))) | 
| 164 | 145, 163 | mpbiri 258 | . . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑎 → ((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)))) | 
| 165 | 164 | impcom 407 | . . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) ∧ 𝑔 = 𝑎) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) | 
| 166 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑑 = 𝑔 → (𝑑𝑅𝑎 ↔ 𝑔𝑅𝑎)) | 
| 167 | 166 | notbid 318 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 = 𝑔 → (¬ 𝑑𝑅𝑎 ↔ ¬ 𝑔𝑅𝑎)) | 
| 168 |  | simplrr 777 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) → ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎) | 
| 169 | 168 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) ∧ 𝑔 ≠ 𝑎) → ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎) | 
| 170 |  | df-ot 4634 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
〈𝑔, ℎ, 𝑖〉 = 〈〈𝑔, ℎ〉, 𝑖〉 | 
| 171 |  | simplr 768 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) ∧ 𝑔 ≠ 𝑎) → 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) | 
| 172 | 170, 171 | eqeltrrid 2845 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) ∧ 𝑔 ≠ 𝑎) → 〈〈𝑔, ℎ〉, 𝑖〉 ∈ 𝑠) | 
| 173 |  | opex 5468 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
〈𝑔, ℎ〉 ∈ V | 
| 174 | 173, 98 | opeldm 5917 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(〈〈𝑔,
ℎ〉, 𝑖〉 ∈ 𝑠 → 〈𝑔, ℎ〉 ∈ dom 𝑠) | 
| 175 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑔 ∈ V | 
| 176 | 175, 135 | opeldm 5917 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(〈𝑔, ℎ〉 ∈ dom 𝑠 → 𝑔 ∈ dom dom 𝑠) | 
| 177 | 172, 174,
176 | 3syl 18 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) ∧ 𝑔 ≠ 𝑎) → 𝑔 ∈ dom dom 𝑠) | 
| 178 | 167, 169,
177 | rspcdva 3622 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) ∧ 𝑔 ≠ 𝑎) → ¬ 𝑔𝑅𝑎) | 
| 179 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) ∧ 𝑔 ≠ 𝑎) → 𝑔 ≠ 𝑎) | 
| 180 | 179 | neneqd 2944 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) ∧ 𝑔 ≠ 𝑎) → ¬ 𝑔 = 𝑎) | 
| 181 |  | ioran 985 | . . . . . . . . . . . . . . . . . . 19
⊢ (¬
(𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ↔ (¬ 𝑔𝑅𝑎 ∧ ¬ 𝑔 = 𝑎)) | 
| 182 | 178, 180,
181 | sylanbrc 583 | . . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) ∧ 𝑔 ≠ 𝑎) → ¬ (𝑔𝑅𝑎 ∨ 𝑔 = 𝑎)) | 
| 183 | 182 | intn3an1d 1480 | . . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) ∧ 𝑔 ≠ 𝑎) → ¬ ((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐))) | 
| 184 | 183 | intnanrd 489 | . . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) ∧ 𝑔 ≠ 𝑎) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) | 
| 185 | 165, 184 | pm2.61dane 3028 | . . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) → ¬ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))) | 
| 186 | 185 | intn3an3d 1482 | . . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) → ¬ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) ∧ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)))) | 
| 187 |  | eleq1 2828 | . . . . . . . . . . . . . . . 16
⊢ (𝑞 = 〈𝑔, ℎ, 𝑖〉 → (𝑞 ∈ 𝑠 ↔ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠)) | 
| 188 | 187 | anbi2d 630 | . . . . . . . . . . . . . . 15
⊢ (𝑞 = 〈𝑔, ℎ, 𝑖〉 → ((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 𝑞 ∈ 𝑠) ↔ (((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠))) | 
| 189 |  | breq1 5145 | . . . . . . . . . . . . . . . . 17
⊢ (𝑞 = 〈𝑔, ℎ, 𝑖〉 → (𝑞𝑈〈𝑎, 𝑏, 𝑐〉 ↔ 〈𝑔, ℎ, 𝑖〉𝑈〈𝑎, 𝑏, 𝑐〉)) | 
| 190 |  | xpord3.1 | . . . . . . . . . . . . . . . . . 18
⊢ 𝑈 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑦 ∈ ((𝐴 × 𝐵) × 𝐶) ∧ ((((1st
‘(1st ‘𝑥))𝑅(1st ‘(1st
‘𝑦)) ∨
(1st ‘(1st ‘𝑥)) = (1st ‘(1st
‘𝑦))) ∧
((2nd ‘(1st ‘𝑥))𝑆(2nd ‘(1st
‘𝑦)) ∨
(2nd ‘(1st ‘𝑥)) = (2nd ‘(1st
‘𝑦))) ∧
((2nd ‘𝑥)𝑇(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦))) ∧ 𝑥 ≠ 𝑦))} | 
| 191 | 190 | xpord3lem 8175 | . . . . . . . . . . . . . . . . 17
⊢
(〈𝑔, ℎ, 𝑖〉𝑈〈𝑎, 𝑏, 𝑐〉 ↔ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) ∧ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)))) | 
| 192 | 189, 191 | bitrdi 287 | . . . . . . . . . . . . . . . 16
⊢ (𝑞 = 〈𝑔, ℎ, 𝑖〉 → (𝑞𝑈〈𝑎, 𝑏, 𝑐〉 ↔ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) ∧ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))))) | 
| 193 | 192 | notbid 318 | . . . . . . . . . . . . . . 15
⊢ (𝑞 = 〈𝑔, ℎ, 𝑖〉 → (¬ 𝑞𝑈〈𝑎, 𝑏, 𝑐〉 ↔ ¬ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) ∧ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐))))) | 
| 194 | 188, 193 | imbi12d 344 | . . . . . . . . . . . . . 14
⊢ (𝑞 = 〈𝑔, ℎ, 𝑖〉 → (((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 𝑞 ∈ 𝑠) → ¬ 𝑞𝑈〈𝑎, 𝑏, 𝑐〉) ↔ ((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 〈𝑔, ℎ, 𝑖〉 ∈ 𝑠) → ¬ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ 𝑖 ∈ 𝐶) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) ∧ (((𝑔𝑅𝑎 ∨ 𝑔 = 𝑎) ∧ (ℎ𝑆𝑏 ∨ ℎ = 𝑏) ∧ (𝑖𝑇𝑐 ∨ 𝑖 = 𝑐)) ∧ (𝑔 ≠ 𝑎 ∨ ℎ ≠ 𝑏 ∨ 𝑖 ≠ 𝑐)))))) | 
| 195 | 186, 194 | mpbiri 258 | . . . . . . . . . . . . 13
⊢ (𝑞 = 〈𝑔, ℎ, 𝑖〉 → ((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 𝑞 ∈ 𝑠) → ¬ 𝑞𝑈〈𝑎, 𝑏, 𝑐〉)) | 
| 196 | 195 | com12 32 | . . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 𝑞 ∈ 𝑠) → (𝑞 = 〈𝑔, ℎ, 𝑖〉 → ¬ 𝑞𝑈〈𝑎, 𝑏, 𝑐〉)) | 
| 197 | 196 | exlimdv 1932 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 𝑞 ∈ 𝑠) → (∃𝑖 𝑞 = 〈𝑔, ℎ, 𝑖〉 → ¬ 𝑞𝑈〈𝑎, 𝑏, 𝑐〉)) | 
| 198 | 197 | exlimdvv 1933 | . . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 𝑞 ∈ 𝑠) → (∃𝑔∃ℎ∃𝑖 𝑞 = 〈𝑔, ℎ, 𝑖〉 → ¬ 𝑞𝑈〈𝑎, 𝑏, 𝑐〉)) | 
| 199 | 85, 198 | mpd 15 | . . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) ∧ 𝑞 ∈ 𝑠) → ¬ 𝑞𝑈〈𝑎, 𝑏, 𝑐〉) | 
| 200 | 199 | ralrimiva 3145 | . . . . . . . 8
⊢
(((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) → ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑈〈𝑎, 𝑏, 𝑐〉) | 
| 201 |  | breq2 5146 | . . . . . . . . . . 11
⊢ (𝑝 = 〈𝑎, 𝑏, 𝑐〉 → (𝑞𝑈𝑝 ↔ 𝑞𝑈〈𝑎, 𝑏, 𝑐〉)) | 
| 202 | 201 | notbid 318 | . . . . . . . . . 10
⊢ (𝑝 = 〈𝑎, 𝑏, 𝑐〉 → (¬ 𝑞𝑈𝑝 ↔ ¬ 𝑞𝑈〈𝑎, 𝑏, 𝑐〉)) | 
| 203 | 202 | ralbidv 3177 | . . . . . . . . 9
⊢ (𝑝 = 〈𝑎, 𝑏, 𝑐〉 → (∀𝑞 ∈ 𝑠 ¬ 𝑞𝑈𝑝 ↔ ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑈〈𝑎, 𝑏, 𝑐〉)) | 
| 204 | 203 | rspcev 3621 | . . . . . . . 8
⊢
((〈𝑎, 𝑏, 𝑐〉 ∈ 𝑠 ∧ ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑈〈𝑎, 𝑏, 𝑐〉) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑈𝑝) | 
| 205 | 80, 200, 204 | syl2anc 584 | . . . . . . 7
⊢
(((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) ∧ (𝑐 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ∧ ∀𝑓 ∈ (𝑠 “ {〈𝑎, 𝑏〉}) ¬ 𝑓𝑇𝑐)) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑈𝑝) | 
| 206 | 73, 205 | rexlimddv 3160 | . . . . . 6
⊢ ((((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) ∧ (𝑏 ∈ (dom 𝑠 “ {𝑎}) ∧ ∀𝑒 ∈ (dom 𝑠 “ {𝑎}) ¬ 𝑒𝑆𝑏)) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑈𝑝) | 
| 207 | 51, 206 | rexlimddv 3160 | . . . . 5
⊢ (((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom dom 𝑠 ∧ ∀𝑑 ∈ dom dom 𝑠 ¬ 𝑑𝑅𝑎)) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑈𝑝) | 
| 208 | 33, 207 | rexlimddv 3160 | . . . 4
⊢ ((𝜑 ∧ (𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅)) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑈𝑝) | 
| 209 | 208 | ex 412 | . . 3
⊢ (𝜑 → ((𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑈𝑝)) | 
| 210 | 209 | alrimiv 1926 | . 2
⊢ (𝜑 → ∀𝑠((𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑈𝑝)) | 
| 211 |  | df-fr 5636 | . 2
⊢ (𝑈 Fr ((𝐴 × 𝐵) × 𝐶) ↔ ∀𝑠((𝑠 ⊆ ((𝐴 × 𝐵) × 𝐶) ∧ 𝑠 ≠ ∅) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑈𝑝)) | 
| 212 | 210, 211 | sylibr 234 | 1
⊢ (𝜑 → 𝑈 Fr ((𝐴 × 𝐵) × 𝐶)) |