Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3biant1d | Structured version Visualization version GIF version |
Description: A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud 532. (Contributed by Alexander van der Vekens, 26-Sep-2017.) |
Ref | Expression |
---|---|
3biantd.1 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
3biant1d | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3biantd.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | biantrurd 533 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ (𝜒 ∧ 𝜓)))) |
3 | 3anass 1094 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜓) ↔ (𝜃 ∧ (𝜒 ∧ 𝜓))) | |
4 | 2, 3 | bitr4di 289 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜒 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: metuel2 23721 itgsubst 25213 clwlkclwwlk 28366 dfgcd3 35495 itg2addnclem2 35829 |
Copyright terms: Public domain | W3C validator |