Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  3biant1d Structured version   Visualization version   GIF version

Theorem 3biant1d 1471
 Description: A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud 532. (Contributed by Alexander van der Vekens, 26-Sep-2017.)
Hypothesis
Ref Expression
3biantd.1 (𝜑𝜃)
Assertion
Ref Expression
3biant1d (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜒𝜓)))

Proof of Theorem 3biant1d
StepHypRef Expression
1 3biantd.1 . . 3 (𝜑𝜃)
21biantrurd 533 . 2 (𝜑 → ((𝜒𝜓) ↔ (𝜃 ∧ (𝜒𝜓))))
3 3anass 1089 . 2 ((𝜃𝜒𝜓) ↔ (𝜃 ∧ (𝜒𝜓)))
42, 3syl6bbr 290 1 (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜒𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1081 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 208  df-an 397  df-3an 1083 This theorem is referenced by:  metuel2  23090  itgsubst  24561  clwlkclwwlk  27694  dfgcd3  34474  itg2addnclem2  34811
 Copyright terms: Public domain W3C validator