| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3biant1d | Structured version Visualization version GIF version | ||
| Description: A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud 531. (Contributed by Alexander van der Vekens, 26-Sep-2017.) |
| Ref | Expression |
|---|---|
| 3biantd.1 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| 3biant1d | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3biantd.1 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 2 | 1 | biantrurd 532 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ (𝜒 ∧ 𝜓)))) |
| 3 | 3anass 1095 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜓) ↔ (𝜃 ∧ (𝜒 ∧ 𝜓))) | |
| 4 | 2, 3 | bitr4di 289 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜒 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: metuel2 24578 itgsubst 26090 clwlkclwwlk 30021 dfgcd3 37325 itg2addnclem2 37679 eluzp1 42341 |
| Copyright terms: Public domain | W3C validator |