MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frxp2 Structured version   Visualization version   GIF version

Theorem frxp2 8170
Description: Another way of giving a well-founded order to a Cartesian product of two classes. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
xpord2.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
frxp2.1 (𝜑𝑅 Fr 𝐴)
frxp2.2 (𝜑𝑆 Fr 𝐵)
Assertion
Ref Expression
frxp2 (𝜑𝑇 Fr (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem frxp2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑝 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmss 5912 . . . . . . . 8 (𝑠 ⊆ (𝐴 × 𝐵) → dom 𝑠 ⊆ dom (𝐴 × 𝐵))
21ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ⊆ dom (𝐴 × 𝐵))
3 dmxpss 6190 . . . . . . 7 dom (𝐴 × 𝐵) ⊆ 𝐴
42, 3sstrdi 3995 . . . . . 6 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠𝐴)
5 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → 𝑠 ≠ ∅)
6 relxp 5702 . . . . . . . . . . 11 Rel (𝐴 × 𝐵)
7 relss 5790 . . . . . . . . . . 11 (𝑠 ⊆ (𝐴 × 𝐵) → (Rel (𝐴 × 𝐵) → Rel 𝑠))
86, 7mpi 20 . . . . . . . . . 10 (𝑠 ⊆ (𝐴 × 𝐵) → Rel 𝑠)
98ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → Rel 𝑠)
10 reldm0 5937 . . . . . . . . 9 (Rel 𝑠 → (𝑠 = ∅ ↔ dom 𝑠 = ∅))
119, 10syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → (𝑠 = ∅ ↔ dom 𝑠 = ∅))
1211necon3bid 2984 . . . . . . 7 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → (𝑠 ≠ ∅ ↔ dom 𝑠 ≠ ∅))
135, 12mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ≠ ∅)
14 frxp2.1 . . . . . . . . 9 (𝜑𝑅 Fr 𝐴)
1514adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → 𝑅 Fr 𝐴)
16 df-fr 5636 . . . . . . . 8 (𝑅 Fr 𝐴 ↔ ∀𝑐((𝑐𝐴𝑐 ≠ ∅) → ∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎))
1715, 16sylib 218 . . . . . . 7 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∀𝑐((𝑐𝐴𝑐 ≠ ∅) → ∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎))
18 vex 3483 . . . . . . . . 9 𝑠 ∈ V
1918dmex 7932 . . . . . . . 8 dom 𝑠 ∈ V
20 sseq1 4008 . . . . . . . . . 10 (𝑐 = dom 𝑠 → (𝑐𝐴 ↔ dom 𝑠𝐴))
21 neeq1 3002 . . . . . . . . . 10 (𝑐 = dom 𝑠 → (𝑐 ≠ ∅ ↔ dom 𝑠 ≠ ∅))
2220, 21anbi12d 632 . . . . . . . . 9 (𝑐 = dom 𝑠 → ((𝑐𝐴𝑐 ≠ ∅) ↔ (dom 𝑠𝐴 ∧ dom 𝑠 ≠ ∅)))
23 raleq 3322 . . . . . . . . . 10 (𝑐 = dom 𝑠 → (∀𝑏𝑐 ¬ 𝑏𝑅𝑎 ↔ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))
2423rexeqbi1dv 3338 . . . . . . . . 9 (𝑐 = dom 𝑠 → (∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎 ↔ ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))
2522, 24imbi12d 344 . . . . . . . 8 (𝑐 = dom 𝑠 → (((𝑐𝐴𝑐 ≠ ∅) → ∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎) ↔ ((dom 𝑠𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)))
2619, 25spcv 3604 . . . . . . 7 (∀𝑐((𝑐𝐴𝑐 ≠ ∅) → ∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎) → ((dom 𝑠𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))
2717, 26syl 17 . . . . . 6 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ((dom 𝑠𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))
284, 13, 27mp2and 699 . . . . 5 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)
29 imassrn 6088 . . . . . . . 8 (𝑠 “ {𝑎}) ⊆ ran 𝑠
30 rnss 5949 . . . . . . . . . . 11 (𝑠 ⊆ (𝐴 × 𝐵) → ran 𝑠 ⊆ ran (𝐴 × 𝐵))
3130ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ran 𝑠 ⊆ ran (𝐴 × 𝐵))
3231adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ran 𝑠 ⊆ ran (𝐴 × 𝐵))
33 rnxpss 6191 . . . . . . . . 9 ran (𝐴 × 𝐵) ⊆ 𝐵
3432, 33sstrdi 3995 . . . . . . . 8 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ran 𝑠𝐵)
3529, 34sstrid 3994 . . . . . . 7 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (𝑠 “ {𝑎}) ⊆ 𝐵)
36 simprl 770 . . . . . . . 8 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → 𝑎 ∈ dom 𝑠)
37 imadisj 6097 . . . . . . . . . 10 ((𝑠 “ {𝑎}) = ∅ ↔ (dom 𝑠 ∩ {𝑎}) = ∅)
38 disjsn 4710 . . . . . . . . . 10 ((dom 𝑠 ∩ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠)
3937, 38bitri 275 . . . . . . . . 9 ((𝑠 “ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠)
4039necon2abii 2990 . . . . . . . 8 (𝑎 ∈ dom 𝑠 ↔ (𝑠 “ {𝑎}) ≠ ∅)
4136, 40sylib 218 . . . . . . 7 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (𝑠 “ {𝑎}) ≠ ∅)
42 frxp2.2 . . . . . . . . . 10 (𝜑𝑆 Fr 𝐵)
43 df-fr 5636 . . . . . . . . . 10 (𝑆 Fr 𝐵 ↔ ∀𝑒((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐))
4442, 43sylib 218 . . . . . . . . 9 (𝜑 → ∀𝑒((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐))
4544ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∀𝑒((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐))
4618imaex 7937 . . . . . . . . 9 (𝑠 “ {𝑎}) ∈ V
47 sseq1 4008 . . . . . . . . . . 11 (𝑒 = (𝑠 “ {𝑎}) → (𝑒𝐵 ↔ (𝑠 “ {𝑎}) ⊆ 𝐵))
48 neeq1 3002 . . . . . . . . . . 11 (𝑒 = (𝑠 “ {𝑎}) → (𝑒 ≠ ∅ ↔ (𝑠 “ {𝑎}) ≠ ∅))
4947, 48anbi12d 632 . . . . . . . . . 10 (𝑒 = (𝑠 “ {𝑎}) → ((𝑒𝐵𝑒 ≠ ∅) ↔ ((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅)))
50 raleq 3322 . . . . . . . . . . 11 (𝑒 = (𝑠 “ {𝑎}) → (∀𝑑𝑒 ¬ 𝑑𝑆𝑐 ↔ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))
5150rexeqbi1dv 3338 . . . . . . . . . 10 (𝑒 = (𝑠 “ {𝑎}) → (∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐 ↔ ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))
5249, 51imbi12d 344 . . . . . . . . 9 (𝑒 = (𝑠 “ {𝑎}) → (((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐) ↔ (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)))
5346, 52spcv 3604 . . . . . . . 8 (∀𝑒((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐) → (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))
5445, 53syl 17 . . . . . . 7 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))
5535, 41, 54mp2and 699 . . . . . 6 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)
56 breq2 5146 . . . . . . . . 9 (𝑝 = ⟨𝑎, 𝑐⟩ → (𝑞𝑇𝑝𝑞𝑇𝑎, 𝑐⟩))
5756notbid 318 . . . . . . . 8 (𝑝 = ⟨𝑎, 𝑐⟩ → (¬ 𝑞𝑇𝑝 ↔ ¬ 𝑞𝑇𝑎, 𝑐⟩))
5857ralbidv 3177 . . . . . . 7 (𝑝 = ⟨𝑎, 𝑐⟩ → (∀𝑞𝑠 ¬ 𝑞𝑇𝑝 ↔ ∀𝑞𝑠 ¬ 𝑞𝑇𝑎, 𝑐⟩))
59 simprl 770 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → 𝑐 ∈ (𝑠 “ {𝑎}))
60 vex 3483 . . . . . . . . 9 𝑎 ∈ V
61 vex 3483 . . . . . . . . 9 𝑐 ∈ V
6260, 61elimasn 6107 . . . . . . . 8 (𝑐 ∈ (𝑠 “ {𝑎}) ↔ ⟨𝑎, 𝑐⟩ ∈ 𝑠)
6359, 62sylib 218 . . . . . . 7 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ⟨𝑎, 𝑐⟩ ∈ 𝑠)
649ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → Rel 𝑠)
65 elrel 5807 . . . . . . . . . 10 ((Rel 𝑠𝑞𝑠) → ∃𝑒𝑓 𝑞 = ⟨𝑒, 𝑓⟩)
6664, 65sylan 580 . . . . . . . . 9 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → ∃𝑒𝑓 𝑞 = ⟨𝑒, 𝑓⟩)
67 breq1 5145 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑓 → (𝑑𝑆𝑐𝑓𝑆𝑐))
6867notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑓 → (¬ 𝑑𝑆𝑐 ↔ ¬ 𝑓𝑆𝑐))
69 simplrr 777 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)
70 vex 3483 . . . . . . . . . . . . . . . . . . . . 21 𝑓 ∈ V
7160, 70elimasn 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (𝑠 “ {𝑎}) ↔ ⟨𝑎, 𝑓⟩ ∈ 𝑠)
7271biimpri 228 . . . . . . . . . . . . . . . . . . 19 (⟨𝑎, 𝑓⟩ ∈ 𝑠𝑓 ∈ (𝑠 “ {𝑎}))
7372adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → 𝑓 ∈ (𝑠 “ {𝑎}))
7468, 69, 73rspcdva 3622 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → ¬ 𝑓𝑆𝑐)
7574intnanrd 489 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → ¬ (𝑓𝑆𝑐𝑓𝑐))
76 opeq1 4872 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑎 → ⟨𝑒, 𝑓⟩ = ⟨𝑎, 𝑓⟩)
7776eleq1d 2825 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑎 → (⟨𝑒, 𝑓⟩ ∈ 𝑠 ↔ ⟨𝑎, 𝑓⟩ ∈ 𝑠))
7877anbi2d 630 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑎 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ↔ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠)))
79 3anass 1094 . . . . . . . . . . . . . . . . . . 19 (((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))
80 olc 868 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑎 → (𝑒𝑅𝑎𝑒 = 𝑎))
8180biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑎 → (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))))
82 neeq1 3002 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = 𝑎 → (𝑒𝑎𝑎𝑎))
8382orbi1d 916 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 = 𝑎 → ((𝑒𝑎𝑓𝑐) ↔ (𝑎𝑎𝑓𝑐)))
84 neirr 2948 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ 𝑎𝑎
8584biorfi 938 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓𝑐 ↔ (𝑎𝑎𝑓𝑐))
8683, 85bitr4di 289 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = 𝑎 → ((𝑒𝑎𝑓𝑐) ↔ 𝑓𝑐))
8786anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑎 → (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ ((𝑓𝑆𝑐𝑓 = 𝑐) ∧ 𝑓𝑐)))
88 andir 1010 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ 𝑓𝑐) ↔ ((𝑓𝑆𝑐𝑓𝑐) ∨ (𝑓 = 𝑐𝑓𝑐)))
89 nonconne 2951 . . . . . . . . . . . . . . . . . . . . . . 23 ¬ (𝑓 = 𝑐𝑓𝑐)
9089biorfri 939 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑆𝑐𝑓𝑐) ↔ ((𝑓𝑆𝑐𝑓𝑐) ∨ (𝑓 = 𝑐𝑓𝑐)))
9188, 90bitr4i 278 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ 𝑓𝑐) ↔ (𝑓𝑆𝑐𝑓𝑐))
9287, 91bitrdi 287 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑎 → (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ (𝑓𝑆𝑐𝑓𝑐)))
9381, 92bitr3d 281 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑎 → (((𝑒𝑅𝑎𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))) ↔ (𝑓𝑆𝑐𝑓𝑐)))
9479, 93bitrid 283 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑎 → (((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ (𝑓𝑆𝑐𝑓𝑐)))
9594notbid 318 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑎 → (¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ ¬ (𝑓𝑆𝑐𝑓𝑐)))
9678, 95imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑎 → ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))) ↔ (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → ¬ (𝑓𝑆𝑐𝑓𝑐))))
9775, 96mpbiri 258 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))
9897impcom 407 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒 = 𝑎) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))
99 breq1 5145 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑒 → (𝑏𝑅𝑎𝑒𝑅𝑎))
10099notbid 318 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑒 → (¬ 𝑏𝑅𝑎 ↔ ¬ 𝑒𝑅𝑎))
101 simplrr 777 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)
102101ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)
103 vex 3483 . . . . . . . . . . . . . . . . . . . 20 𝑒 ∈ V
104103, 70opeldm 5917 . . . . . . . . . . . . . . . . . . 19 (⟨𝑒, 𝑓⟩ ∈ 𝑠𝑒 ∈ dom 𝑠)
105104adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → 𝑒 ∈ dom 𝑠)
106105adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → 𝑒 ∈ dom 𝑠)
107100, 102, 106rspcdva 3622 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ¬ 𝑒𝑅𝑎)
108 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → 𝑒𝑎)
109108neneqd 2944 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ¬ 𝑒 = 𝑎)
110 ioran 985 . . . . . . . . . . . . . . . 16 (¬ (𝑒𝑅𝑎𝑒 = 𝑎) ↔ (¬ 𝑒𝑅𝑎 ∧ ¬ 𝑒 = 𝑎))
111107, 109, 110sylanbrc 583 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ¬ (𝑒𝑅𝑎𝑒 = 𝑎))
112111intn3an1d 1480 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))
11398, 112pm2.61dane 3028 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))
114113intn3an3d 1482 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))
115 eleq1 2828 . . . . . . . . . . . . . 14 (𝑞 = ⟨𝑒, 𝑓⟩ → (𝑞𝑠 ↔ ⟨𝑒, 𝑓⟩ ∈ 𝑠))
116115anbi2d 630 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑒, 𝑓⟩ → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) ↔ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠)))
117 breq1 5145 . . . . . . . . . . . . . . 15 (𝑞 = ⟨𝑒, 𝑓⟩ → (𝑞𝑇𝑎, 𝑐⟩ ↔ ⟨𝑒, 𝑓𝑇𝑎, 𝑐⟩))
118 xpord2.1 . . . . . . . . . . . . . . . 16 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
119118xpord2lem 8168 . . . . . . . . . . . . . . 15 (⟨𝑒, 𝑓𝑇𝑎, 𝑐⟩ ↔ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))
120117, 119bitrdi 287 . . . . . . . . . . . . . 14 (𝑞 = ⟨𝑒, 𝑓⟩ → (𝑞𝑇𝑎, 𝑐⟩ ↔ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))))
121120notbid 318 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑒, 𝑓⟩ → (¬ 𝑞𝑇𝑎, 𝑐⟩ ↔ ¬ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))))
122116, 121imbi12d 344 . . . . . . . . . . . 12 (𝑞 = ⟨𝑒, 𝑓⟩ → ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → ¬ 𝑞𝑇𝑎, 𝑐⟩) ↔ (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))))
123114, 122mpbiri 258 . . . . . . . . . . 11 (𝑞 = ⟨𝑒, 𝑓⟩ → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → ¬ 𝑞𝑇𝑎, 𝑐⟩))
124123com12 32 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → (𝑞 = ⟨𝑒, 𝑓⟩ → ¬ 𝑞𝑇𝑎, 𝑐⟩))
125124exlimdvv 1933 . . . . . . . . 9 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → (∃𝑒𝑓 𝑞 = ⟨𝑒, 𝑓⟩ → ¬ 𝑞𝑇𝑎, 𝑐⟩))
12666, 125mpd 15 . . . . . . . 8 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → ¬ 𝑞𝑇𝑎, 𝑐⟩)
127126ralrimiva 3145 . . . . . . 7 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∀𝑞𝑠 ¬ 𝑞𝑇𝑎, 𝑐⟩)
12858, 63, 127rspcedvdw 3624 . . . . . 6 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝)
12955, 128rexlimddv 3160 . . . . 5 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝)
13028, 129rexlimddv 3160 . . . 4 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝)
131130ex 412 . . 3 (𝜑 → ((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝))
132131alrimiv 1926 . 2 (𝜑 → ∀𝑠((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝))
133 df-fr 5636 . 2 (𝑇 Fr (𝐴 × 𝐵) ↔ ∀𝑠((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝))
134132, 133sylibr 234 1 (𝜑𝑇 Fr (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1537   = wceq 1539  wex 1778  wcel 2107  wne 2939  wral 3060  wrex 3069  cin 3949  wss 3950  c0 4332  {csn 4625  cop 4631   class class class wbr 5142  {copab 5204   Fr wfr 5633   × cxp 5682  dom cdm 5684  ran crn 5685  cima 5687  Rel wrel 5689  cfv 6560  1st c1st 8013  2nd c2nd 8014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-fr 5636  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fv 6568  df-1st 8015  df-2nd 8016
This theorem is referenced by:  xpord2indlem  8173  on2recsfn  8706  on2recsov  8707  noxpordfr  27985
  Copyright terms: Public domain W3C validator