Step | Hyp | Ref
| Expression |
1 | | dmss 5800 |
. . . . . . . 8
⊢ (𝑠 ⊆ (𝐴 × 𝐵) → dom 𝑠 ⊆ dom (𝐴 × 𝐵)) |
2 | 1 | ad2antrl 724 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ⊆ dom (𝐴 × 𝐵)) |
3 | | dmxpss 6063 |
. . . . . . 7
⊢ dom
(𝐴 × 𝐵) ⊆ 𝐴 |
4 | 2, 3 | sstrdi 3929 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ⊆ 𝐴) |
5 | | simprr 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → 𝑠 ≠ ∅) |
6 | | relxp 5598 |
. . . . . . . . . . 11
⊢ Rel
(𝐴 × 𝐵) |
7 | | relss 5682 |
. . . . . . . . . . 11
⊢ (𝑠 ⊆ (𝐴 × 𝐵) → (Rel (𝐴 × 𝐵) → Rel 𝑠)) |
8 | 6, 7 | mpi 20 |
. . . . . . . . . 10
⊢ (𝑠 ⊆ (𝐴 × 𝐵) → Rel 𝑠) |
9 | 8 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → Rel 𝑠) |
10 | | reldm0 5826 |
. . . . . . . . 9
⊢ (Rel
𝑠 → (𝑠 = ∅ ↔ dom 𝑠 = ∅)) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → (𝑠 = ∅ ↔ dom 𝑠 = ∅)) |
12 | 11 | necon3bid 2987 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → (𝑠 ≠ ∅ ↔ dom 𝑠 ≠ ∅)) |
13 | 5, 12 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ≠ ∅) |
14 | | frxp2.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 Fr 𝐴) |
15 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → 𝑅 Fr 𝐴) |
16 | | df-fr 5535 |
. . . . . . . 8
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑐((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) → ∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎)) |
17 | 15, 16 | sylib 217 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∀𝑐((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) → ∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎)) |
18 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑠 ∈ V |
19 | 18 | dmex 7732 |
. . . . . . . 8
⊢ dom 𝑠 ∈ V |
20 | | sseq1 3942 |
. . . . . . . . . 10
⊢ (𝑐 = dom 𝑠 → (𝑐 ⊆ 𝐴 ↔ dom 𝑠 ⊆ 𝐴)) |
21 | | neeq1 3005 |
. . . . . . . . . 10
⊢ (𝑐 = dom 𝑠 → (𝑐 ≠ ∅ ↔ dom 𝑠 ≠ ∅)) |
22 | 20, 21 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑐 = dom 𝑠 → ((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) ↔ (dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅))) |
23 | | raleq 3333 |
. . . . . . . . . 10
⊢ (𝑐 = dom 𝑠 → (∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎 ↔ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) |
24 | 23 | rexeqbi1dv 3332 |
. . . . . . . . 9
⊢ (𝑐 = dom 𝑠 → (∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎 ↔ ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) |
25 | 22, 24 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑐 = dom 𝑠 → (((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) → ∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎) ↔ ((dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))) |
26 | 19, 25 | spcv 3534 |
. . . . . . 7
⊢
(∀𝑐((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) → ∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎) → ((dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) |
27 | 17, 26 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ((dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) |
28 | 4, 13, 27 | mp2and 695 |
. . . . 5
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎) |
29 | | imassrn 5969 |
. . . . . . . 8
⊢ (𝑠 “ {𝑎}) ⊆ ran 𝑠 |
30 | | rnss 5837 |
. . . . . . . . . . 11
⊢ (𝑠 ⊆ (𝐴 × 𝐵) → ran 𝑠 ⊆ ran (𝐴 × 𝐵)) |
31 | 30 | ad2antrl 724 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ran 𝑠 ⊆ ran (𝐴 × 𝐵)) |
32 | 31 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ran 𝑠 ⊆ ran (𝐴 × 𝐵)) |
33 | | rnxpss 6064 |
. . . . . . . . 9
⊢ ran
(𝐴 × 𝐵) ⊆ 𝐵 |
34 | 32, 33 | sstrdi 3929 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ran 𝑠 ⊆ 𝐵) |
35 | 29, 34 | sstrid 3928 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (𝑠 “ {𝑎}) ⊆ 𝐵) |
36 | | simprl 767 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → 𝑎 ∈ dom 𝑠) |
37 | | imadisj 5977 |
. . . . . . . . . 10
⊢ ((𝑠 “ {𝑎}) = ∅ ↔ (dom 𝑠 ∩ {𝑎}) = ∅) |
38 | | disjsn 4644 |
. . . . . . . . . 10
⊢ ((dom
𝑠 ∩ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠) |
39 | 37, 38 | bitri 274 |
. . . . . . . . 9
⊢ ((𝑠 “ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠) |
40 | 39 | necon2abii 2993 |
. . . . . . . 8
⊢ (𝑎 ∈ dom 𝑠 ↔ (𝑠 “ {𝑎}) ≠ ∅) |
41 | 36, 40 | sylib 217 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (𝑠 “ {𝑎}) ≠ ∅) |
42 | | frxp2.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 Fr 𝐵) |
43 | | df-fr 5535 |
. . . . . . . . . 10
⊢ (𝑆 Fr 𝐵 ↔ ∀𝑒((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐)) |
44 | 42, 43 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑒((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐)) |
45 | 44 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∀𝑒((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐)) |
46 | 18 | imaex 7737 |
. . . . . . . . 9
⊢ (𝑠 “ {𝑎}) ∈ V |
47 | | sseq1 3942 |
. . . . . . . . . . 11
⊢ (𝑒 = (𝑠 “ {𝑎}) → (𝑒 ⊆ 𝐵 ↔ (𝑠 “ {𝑎}) ⊆ 𝐵)) |
48 | | neeq1 3005 |
. . . . . . . . . . 11
⊢ (𝑒 = (𝑠 “ {𝑎}) → (𝑒 ≠ ∅ ↔ (𝑠 “ {𝑎}) ≠ ∅)) |
49 | 47, 48 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑒 = (𝑠 “ {𝑎}) → ((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) ↔ ((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅))) |
50 | | raleq 3333 |
. . . . . . . . . . 11
⊢ (𝑒 = (𝑠 “ {𝑎}) → (∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐 ↔ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) |
51 | 50 | rexeqbi1dv 3332 |
. . . . . . . . . 10
⊢ (𝑒 = (𝑠 “ {𝑎}) → (∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐 ↔ ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) |
52 | 49, 51 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑒 = (𝑠 “ {𝑎}) → (((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐) ↔ (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))) |
53 | 46, 52 | spcv 3534 |
. . . . . . . 8
⊢
(∀𝑒((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐) → (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) |
54 | 45, 53 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) |
55 | 35, 41, 54 | mp2and 695 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐) |
56 | | simprl 767 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → 𝑐 ∈ (𝑠 “ {𝑎})) |
57 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑎 ∈ V |
58 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑐 ∈ V |
59 | 57, 58 | elimasn 5986 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝑠 “ {𝑎}) ↔ 〈𝑎, 𝑐〉 ∈ 𝑠) |
60 | 56, 59 | sylib 217 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → 〈𝑎, 𝑐〉 ∈ 𝑠) |
61 | 9 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → Rel 𝑠) |
62 | | elrel 5697 |
. . . . . . . . . 10
⊢ ((Rel
𝑠 ∧ 𝑞 ∈ 𝑠) → ∃𝑒∃𝑓 𝑞 = 〈𝑒, 𝑓〉) |
63 | 61, 62 | sylan 579 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → ∃𝑒∃𝑓 𝑞 = 〈𝑒, 𝑓〉) |
64 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 = 𝑓 → (𝑑𝑆𝑐 ↔ 𝑓𝑆𝑐)) |
65 | 64 | notbid 317 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑓 → (¬ 𝑑𝑆𝑐 ↔ ¬ 𝑓𝑆𝑐)) |
66 | | simplrr 774 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐) |
67 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑓 ∈ V |
68 | 57, 67 | elimasn 5986 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ (𝑠 “ {𝑎}) ↔ 〈𝑎, 𝑓〉 ∈ 𝑠) |
69 | 68 | biimpri 227 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈𝑎, 𝑓〉 ∈ 𝑠 → 𝑓 ∈ (𝑠 “ {𝑎})) |
70 | 69 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → 𝑓 ∈ (𝑠 “ {𝑎})) |
71 | 65, 66, 70 | rspcdva 3554 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → ¬ 𝑓𝑆𝑐) |
72 | 71 | intnanrd 489 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → ¬ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐)) |
73 | | opeq1 4801 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑎 → 〈𝑒, 𝑓〉 = 〈𝑎, 𝑓〉) |
74 | 73 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑎 → (〈𝑒, 𝑓〉 ∈ 𝑠 ↔ 〈𝑎, 𝑓〉 ∈ 𝑠)) |
75 | 74 | anbi2d 628 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = 𝑎 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ↔ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠))) |
76 | | 3anass 1093 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))) |
77 | | olc 864 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑎 → (𝑒𝑅𝑎 ∨ 𝑒 = 𝑎)) |
78 | 77 | biantrurd 532 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑎 → (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))))) |
79 | | neeq1 3005 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑒 = 𝑎 → (𝑒 ≠ 𝑎 ↔ 𝑎 ≠ 𝑎)) |
80 | 79 | orbi1d 913 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 = 𝑎 → ((𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐) ↔ (𝑎 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) |
81 | | neirr 2951 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ¬
𝑎 ≠ 𝑎 |
82 | | biorf 933 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑎 ≠ 𝑎 → (𝑓 ≠ 𝑐 ↔ (𝑎 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) |
83 | 81, 82 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 ≠ 𝑐 ↔ (𝑎 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) |
84 | 80, 83 | bitr4di 288 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑒 = 𝑎 → ((𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐) ↔ 𝑓 ≠ 𝑐)) |
85 | 84 | anbi2d 628 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑎 → (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ ((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ 𝑓 ≠ 𝑐))) |
86 | | andir 1005 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ 𝑓 ≠ 𝑐) ↔ ((𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐) ∨ (𝑓 = 𝑐 ∧ 𝑓 ≠ 𝑐))) |
87 | | nonconne 2954 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ¬
(𝑓 = 𝑐 ∧ 𝑓 ≠ 𝑐) |
88 | 87 | biorfi 935 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐) ↔ ((𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐) ∨ (𝑓 = 𝑐 ∧ 𝑓 ≠ 𝑐))) |
89 | 86, 88 | bitr4i 277 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ 𝑓 ≠ 𝑐) ↔ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐)) |
90 | 85, 89 | bitrdi 286 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑎 → (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐))) |
91 | 78, 90 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑎 → (((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) ↔ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐))) |
92 | 76, 91 | syl5bb 282 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑎 → (((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐))) |
93 | 92 | notbid 317 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = 𝑎 → (¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ ¬ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐))) |
94 | 75, 93 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = 𝑎 → ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) ↔ (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → ¬ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐)))) |
95 | 72, 94 | mpbiri 257 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = 𝑎 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))) |
96 | 95 | impcom 407 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 = 𝑎) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) |
97 | | breq1 5073 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑒 → (𝑏𝑅𝑎 ↔ 𝑒𝑅𝑎)) |
98 | 97 | notbid 317 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑒 → (¬ 𝑏𝑅𝑎 ↔ ¬ 𝑒𝑅𝑎)) |
99 | | simplrr 774 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎) |
100 | 99 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎) |
101 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑒 ∈ V |
102 | 101, 67 | opeldm 5805 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈𝑒, 𝑓〉 ∈ 𝑠 → 𝑒 ∈ dom 𝑠) |
103 | 102 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → 𝑒 ∈ dom 𝑠) |
104 | 103 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → 𝑒 ∈ dom 𝑠) |
105 | 98, 100, 104 | rspcdva 3554 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ¬ 𝑒𝑅𝑎) |
106 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → 𝑒 ≠ 𝑎) |
107 | 106 | neneqd 2947 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ¬ 𝑒 = 𝑎) |
108 | | ioran 980 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ↔ (¬ 𝑒𝑅𝑎 ∧ ¬ 𝑒 = 𝑎)) |
109 | 105, 107,
108 | sylanbrc 582 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ¬ (𝑒𝑅𝑎 ∨ 𝑒 = 𝑎)) |
110 | 109 | intn3an1d 1477 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) |
111 | 96, 110 | pm2.61dane 3031 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) |
112 | 111 | intn3an3d 1479 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))) |
113 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (𝑞 ∈ 𝑠 ↔ 〈𝑒, 𝑓〉 ∈ 𝑠)) |
114 | 113 | anbi2d 628 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) ↔ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠))) |
115 | | breq1 5073 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (𝑞𝑇〈𝑎, 𝑐〉 ↔ 〈𝑒, 𝑓〉𝑇〈𝑎, 𝑐〉)) |
116 | | xpord2.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd
‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} |
117 | 116 | xpord2lem 33716 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑒, 𝑓〉𝑇〈𝑎, 𝑐〉 ↔ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))) |
118 | 115, 117 | bitrdi 286 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (𝑞𝑇〈𝑎, 𝑐〉 ↔ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))))) |
119 | 118 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (¬ 𝑞𝑇〈𝑎, 𝑐〉 ↔ ¬ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))))) |
120 | 114, 119 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑞 = 〈𝑒, 𝑓〉 → ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → ¬ 𝑞𝑇〈𝑎, 𝑐〉) ↔ (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))))) |
121 | 112, 120 | mpbiri 257 |
. . . . . . . . . . 11
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → ¬ 𝑞𝑇〈𝑎, 𝑐〉)) |
122 | 121 | com12 32 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → (𝑞 = 〈𝑒, 𝑓〉 → ¬ 𝑞𝑇〈𝑎, 𝑐〉)) |
123 | 122 | exlimdvv 1938 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → (∃𝑒∃𝑓 𝑞 = 〈𝑒, 𝑓〉 → ¬ 𝑞𝑇〈𝑎, 𝑐〉)) |
124 | 63, 123 | mpd 15 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → ¬ 𝑞𝑇〈𝑎, 𝑐〉) |
125 | 124 | ralrimiva 3107 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇〈𝑎, 𝑐〉) |
126 | | breq2 5074 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑎, 𝑐〉 → (𝑞𝑇𝑝 ↔ 𝑞𝑇〈𝑎, 𝑐〉)) |
127 | 126 | notbid 317 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑎, 𝑐〉 → (¬ 𝑞𝑇𝑝 ↔ ¬ 𝑞𝑇〈𝑎, 𝑐〉)) |
128 | 127 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑎, 𝑐〉 → (∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝 ↔ ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇〈𝑎, 𝑐〉)) |
129 | 128 | rspcev 3552 |
. . . . . . 7
⊢
((〈𝑎, 𝑐〉 ∈ 𝑠 ∧ ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇〈𝑎, 𝑐〉) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝) |
130 | 60, 125, 129 | syl2anc 583 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝) |
131 | 55, 130 | rexlimddv 3219 |
. . . . 5
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝) |
132 | 28, 131 | rexlimddv 3219 |
. . . 4
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝) |
133 | 132 | ex 412 |
. . 3
⊢ (𝜑 → ((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝)) |
134 | 133 | alrimiv 1931 |
. 2
⊢ (𝜑 → ∀𝑠((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝)) |
135 | | df-fr 5535 |
. 2
⊢ (𝑇 Fr (𝐴 × 𝐵) ↔ ∀𝑠((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝)) |
136 | 134, 135 | sylibr 233 |
1
⊢ (𝜑 → 𝑇 Fr (𝐴 × 𝐵)) |