Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frxp2 Structured version   Visualization version   GIF version

Theorem frxp2 33718
Description: Another way of giving a founded order to a cross product of two classes. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
xpord2.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
frxp2.1 (𝜑𝑅 Fr 𝐴)
frxp2.2 (𝜑𝑆 Fr 𝐵)
Assertion
Ref Expression
frxp2 (𝜑𝑇 Fr (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem frxp2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑝 𝑞 𝑠 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmss 5800 . . . . . . . 8 (𝑠 ⊆ (𝐴 × 𝐵) → dom 𝑠 ⊆ dom (𝐴 × 𝐵))
21ad2antrl 724 . . . . . . 7 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ⊆ dom (𝐴 × 𝐵))
3 dmxpss 6063 . . . . . . 7 dom (𝐴 × 𝐵) ⊆ 𝐴
42, 3sstrdi 3929 . . . . . 6 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠𝐴)
5 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → 𝑠 ≠ ∅)
6 relxp 5598 . . . . . . . . . . 11 Rel (𝐴 × 𝐵)
7 relss 5682 . . . . . . . . . . 11 (𝑠 ⊆ (𝐴 × 𝐵) → (Rel (𝐴 × 𝐵) → Rel 𝑠))
86, 7mpi 20 . . . . . . . . . 10 (𝑠 ⊆ (𝐴 × 𝐵) → Rel 𝑠)
98ad2antrl 724 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → Rel 𝑠)
10 reldm0 5826 . . . . . . . . 9 (Rel 𝑠 → (𝑠 = ∅ ↔ dom 𝑠 = ∅))
119, 10syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → (𝑠 = ∅ ↔ dom 𝑠 = ∅))
1211necon3bid 2987 . . . . . . 7 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → (𝑠 ≠ ∅ ↔ dom 𝑠 ≠ ∅))
135, 12mpbid 231 . . . . . 6 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ≠ ∅)
14 frxp2.1 . . . . . . . . 9 (𝜑𝑅 Fr 𝐴)
1514adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → 𝑅 Fr 𝐴)
16 df-fr 5535 . . . . . . . 8 (𝑅 Fr 𝐴 ↔ ∀𝑐((𝑐𝐴𝑐 ≠ ∅) → ∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎))
1715, 16sylib 217 . . . . . . 7 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∀𝑐((𝑐𝐴𝑐 ≠ ∅) → ∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎))
18 vex 3426 . . . . . . . . 9 𝑠 ∈ V
1918dmex 7732 . . . . . . . 8 dom 𝑠 ∈ V
20 sseq1 3942 . . . . . . . . . 10 (𝑐 = dom 𝑠 → (𝑐𝐴 ↔ dom 𝑠𝐴))
21 neeq1 3005 . . . . . . . . . 10 (𝑐 = dom 𝑠 → (𝑐 ≠ ∅ ↔ dom 𝑠 ≠ ∅))
2220, 21anbi12d 630 . . . . . . . . 9 (𝑐 = dom 𝑠 → ((𝑐𝐴𝑐 ≠ ∅) ↔ (dom 𝑠𝐴 ∧ dom 𝑠 ≠ ∅)))
23 raleq 3333 . . . . . . . . . 10 (𝑐 = dom 𝑠 → (∀𝑏𝑐 ¬ 𝑏𝑅𝑎 ↔ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))
2423rexeqbi1dv 3332 . . . . . . . . 9 (𝑐 = dom 𝑠 → (∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎 ↔ ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))
2522, 24imbi12d 344 . . . . . . . 8 (𝑐 = dom 𝑠 → (((𝑐𝐴𝑐 ≠ ∅) → ∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎) ↔ ((dom 𝑠𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)))
2619, 25spcv 3534 . . . . . . 7 (∀𝑐((𝑐𝐴𝑐 ≠ ∅) → ∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎) → ((dom 𝑠𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))
2717, 26syl 17 . . . . . 6 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ((dom 𝑠𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))
284, 13, 27mp2and 695 . . . . 5 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)
29 imassrn 5969 . . . . . . . 8 (𝑠 “ {𝑎}) ⊆ ran 𝑠
30 rnss 5837 . . . . . . . . . . 11 (𝑠 ⊆ (𝐴 × 𝐵) → ran 𝑠 ⊆ ran (𝐴 × 𝐵))
3130ad2antrl 724 . . . . . . . . . 10 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ran 𝑠 ⊆ ran (𝐴 × 𝐵))
3231adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ran 𝑠 ⊆ ran (𝐴 × 𝐵))
33 rnxpss 6064 . . . . . . . . 9 ran (𝐴 × 𝐵) ⊆ 𝐵
3432, 33sstrdi 3929 . . . . . . . 8 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ran 𝑠𝐵)
3529, 34sstrid 3928 . . . . . . 7 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (𝑠 “ {𝑎}) ⊆ 𝐵)
36 simprl 767 . . . . . . . 8 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → 𝑎 ∈ dom 𝑠)
37 imadisj 5977 . . . . . . . . . 10 ((𝑠 “ {𝑎}) = ∅ ↔ (dom 𝑠 ∩ {𝑎}) = ∅)
38 disjsn 4644 . . . . . . . . . 10 ((dom 𝑠 ∩ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠)
3937, 38bitri 274 . . . . . . . . 9 ((𝑠 “ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠)
4039necon2abii 2993 . . . . . . . 8 (𝑎 ∈ dom 𝑠 ↔ (𝑠 “ {𝑎}) ≠ ∅)
4136, 40sylib 217 . . . . . . 7 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (𝑠 “ {𝑎}) ≠ ∅)
42 frxp2.2 . . . . . . . . . 10 (𝜑𝑆 Fr 𝐵)
43 df-fr 5535 . . . . . . . . . 10 (𝑆 Fr 𝐵 ↔ ∀𝑒((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐))
4442, 43sylib 217 . . . . . . . . 9 (𝜑 → ∀𝑒((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐))
4544ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∀𝑒((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐))
4618imaex 7737 . . . . . . . . 9 (𝑠 “ {𝑎}) ∈ V
47 sseq1 3942 . . . . . . . . . . 11 (𝑒 = (𝑠 “ {𝑎}) → (𝑒𝐵 ↔ (𝑠 “ {𝑎}) ⊆ 𝐵))
48 neeq1 3005 . . . . . . . . . . 11 (𝑒 = (𝑠 “ {𝑎}) → (𝑒 ≠ ∅ ↔ (𝑠 “ {𝑎}) ≠ ∅))
4947, 48anbi12d 630 . . . . . . . . . 10 (𝑒 = (𝑠 “ {𝑎}) → ((𝑒𝐵𝑒 ≠ ∅) ↔ ((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅)))
50 raleq 3333 . . . . . . . . . . 11 (𝑒 = (𝑠 “ {𝑎}) → (∀𝑑𝑒 ¬ 𝑑𝑆𝑐 ↔ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))
5150rexeqbi1dv 3332 . . . . . . . . . 10 (𝑒 = (𝑠 “ {𝑎}) → (∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐 ↔ ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))
5249, 51imbi12d 344 . . . . . . . . 9 (𝑒 = (𝑠 “ {𝑎}) → (((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐) ↔ (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)))
5346, 52spcv 3534 . . . . . . . 8 (∀𝑒((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐) → (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))
5445, 53syl 17 . . . . . . 7 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))
5535, 41, 54mp2and 695 . . . . . 6 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)
56 simprl 767 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → 𝑐 ∈ (𝑠 “ {𝑎}))
57 vex 3426 . . . . . . . . 9 𝑎 ∈ V
58 vex 3426 . . . . . . . . 9 𝑐 ∈ V
5957, 58elimasn 5986 . . . . . . . 8 (𝑐 ∈ (𝑠 “ {𝑎}) ↔ ⟨𝑎, 𝑐⟩ ∈ 𝑠)
6056, 59sylib 217 . . . . . . 7 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ⟨𝑎, 𝑐⟩ ∈ 𝑠)
619ad2antrr 722 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → Rel 𝑠)
62 elrel 5697 . . . . . . . . . 10 ((Rel 𝑠𝑞𝑠) → ∃𝑒𝑓 𝑞 = ⟨𝑒, 𝑓⟩)
6361, 62sylan 579 . . . . . . . . 9 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → ∃𝑒𝑓 𝑞 = ⟨𝑒, 𝑓⟩)
64 breq1 5073 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑓 → (𝑑𝑆𝑐𝑓𝑆𝑐))
6564notbid 317 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑓 → (¬ 𝑑𝑆𝑐 ↔ ¬ 𝑓𝑆𝑐))
66 simplrr 774 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)
67 vex 3426 . . . . . . . . . . . . . . . . . . . . 21 𝑓 ∈ V
6857, 67elimasn 5986 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (𝑠 “ {𝑎}) ↔ ⟨𝑎, 𝑓⟩ ∈ 𝑠)
6968biimpri 227 . . . . . . . . . . . . . . . . . . 19 (⟨𝑎, 𝑓⟩ ∈ 𝑠𝑓 ∈ (𝑠 “ {𝑎}))
7069adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → 𝑓 ∈ (𝑠 “ {𝑎}))
7165, 66, 70rspcdva 3554 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → ¬ 𝑓𝑆𝑐)
7271intnanrd 489 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → ¬ (𝑓𝑆𝑐𝑓𝑐))
73 opeq1 4801 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑎 → ⟨𝑒, 𝑓⟩ = ⟨𝑎, 𝑓⟩)
7473eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑎 → (⟨𝑒, 𝑓⟩ ∈ 𝑠 ↔ ⟨𝑎, 𝑓⟩ ∈ 𝑠))
7574anbi2d 628 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑎 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ↔ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠)))
76 3anass 1093 . . . . . . . . . . . . . . . . . . 19 (((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))
77 olc 864 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑎 → (𝑒𝑅𝑎𝑒 = 𝑎))
7877biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑎 → (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))))
79 neeq1 3005 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = 𝑎 → (𝑒𝑎𝑎𝑎))
8079orbi1d 913 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 = 𝑎 → ((𝑒𝑎𝑓𝑐) ↔ (𝑎𝑎𝑓𝑐)))
81 neirr 2951 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ 𝑎𝑎
82 biorf 933 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑎𝑎 → (𝑓𝑐 ↔ (𝑎𝑎𝑓𝑐)))
8381, 82ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓𝑐 ↔ (𝑎𝑎𝑓𝑐))
8480, 83bitr4di 288 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = 𝑎 → ((𝑒𝑎𝑓𝑐) ↔ 𝑓𝑐))
8584anbi2d 628 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑎 → (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ ((𝑓𝑆𝑐𝑓 = 𝑐) ∧ 𝑓𝑐)))
86 andir 1005 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ 𝑓𝑐) ↔ ((𝑓𝑆𝑐𝑓𝑐) ∨ (𝑓 = 𝑐𝑓𝑐)))
87 nonconne 2954 . . . . . . . . . . . . . . . . . . . . . . 23 ¬ (𝑓 = 𝑐𝑓𝑐)
8887biorfi 935 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑆𝑐𝑓𝑐) ↔ ((𝑓𝑆𝑐𝑓𝑐) ∨ (𝑓 = 𝑐𝑓𝑐)))
8986, 88bitr4i 277 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ 𝑓𝑐) ↔ (𝑓𝑆𝑐𝑓𝑐))
9085, 89bitrdi 286 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑎 → (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ (𝑓𝑆𝑐𝑓𝑐)))
9178, 90bitr3d 280 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑎 → (((𝑒𝑅𝑎𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))) ↔ (𝑓𝑆𝑐𝑓𝑐)))
9276, 91syl5bb 282 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑎 → (((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ (𝑓𝑆𝑐𝑓𝑐)))
9392notbid 317 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑎 → (¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ ¬ (𝑓𝑆𝑐𝑓𝑐)))
9475, 93imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑎 → ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))) ↔ (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → ¬ (𝑓𝑆𝑐𝑓𝑐))))
9572, 94mpbiri 257 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))
9695impcom 407 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒 = 𝑎) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))
97 breq1 5073 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑒 → (𝑏𝑅𝑎𝑒𝑅𝑎))
9897notbid 317 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑒 → (¬ 𝑏𝑅𝑎 ↔ ¬ 𝑒𝑅𝑎))
99 simplrr 774 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)
10099ad2antrr 722 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)
101 vex 3426 . . . . . . . . . . . . . . . . . . . 20 𝑒 ∈ V
102101, 67opeldm 5805 . . . . . . . . . . . . . . . . . . 19 (⟨𝑒, 𝑓⟩ ∈ 𝑠𝑒 ∈ dom 𝑠)
103102adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → 𝑒 ∈ dom 𝑠)
104103adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → 𝑒 ∈ dom 𝑠)
10598, 100, 104rspcdva 3554 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ¬ 𝑒𝑅𝑎)
106 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → 𝑒𝑎)
107106neneqd 2947 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ¬ 𝑒 = 𝑎)
108 ioran 980 . . . . . . . . . . . . . . . 16 (¬ (𝑒𝑅𝑎𝑒 = 𝑎) ↔ (¬ 𝑒𝑅𝑎 ∧ ¬ 𝑒 = 𝑎))
109105, 107, 108sylanbrc 582 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ¬ (𝑒𝑅𝑎𝑒 = 𝑎))
110109intn3an1d 1477 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))
11196, 110pm2.61dane 3031 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))
112111intn3an3d 1479 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))
113 eleq1 2826 . . . . . . . . . . . . . 14 (𝑞 = ⟨𝑒, 𝑓⟩ → (𝑞𝑠 ↔ ⟨𝑒, 𝑓⟩ ∈ 𝑠))
114113anbi2d 628 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑒, 𝑓⟩ → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) ↔ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠)))
115 breq1 5073 . . . . . . . . . . . . . . 15 (𝑞 = ⟨𝑒, 𝑓⟩ → (𝑞𝑇𝑎, 𝑐⟩ ↔ ⟨𝑒, 𝑓𝑇𝑎, 𝑐⟩))
116 xpord2.1 . . . . . . . . . . . . . . . 16 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
117116xpord2lem 33716 . . . . . . . . . . . . . . 15 (⟨𝑒, 𝑓𝑇𝑎, 𝑐⟩ ↔ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))
118115, 117bitrdi 286 . . . . . . . . . . . . . 14 (𝑞 = ⟨𝑒, 𝑓⟩ → (𝑞𝑇𝑎, 𝑐⟩ ↔ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))))
119118notbid 317 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑒, 𝑓⟩ → (¬ 𝑞𝑇𝑎, 𝑐⟩ ↔ ¬ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))))
120114, 119imbi12d 344 . . . . . . . . . . . 12 (𝑞 = ⟨𝑒, 𝑓⟩ → ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → ¬ 𝑞𝑇𝑎, 𝑐⟩) ↔ (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))))
121112, 120mpbiri 257 . . . . . . . . . . 11 (𝑞 = ⟨𝑒, 𝑓⟩ → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → ¬ 𝑞𝑇𝑎, 𝑐⟩))
122121com12 32 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → (𝑞 = ⟨𝑒, 𝑓⟩ → ¬ 𝑞𝑇𝑎, 𝑐⟩))
123122exlimdvv 1938 . . . . . . . . 9 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → (∃𝑒𝑓 𝑞 = ⟨𝑒, 𝑓⟩ → ¬ 𝑞𝑇𝑎, 𝑐⟩))
12463, 123mpd 15 . . . . . . . 8 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → ¬ 𝑞𝑇𝑎, 𝑐⟩)
125124ralrimiva 3107 . . . . . . 7 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∀𝑞𝑠 ¬ 𝑞𝑇𝑎, 𝑐⟩)
126 breq2 5074 . . . . . . . . . 10 (𝑝 = ⟨𝑎, 𝑐⟩ → (𝑞𝑇𝑝𝑞𝑇𝑎, 𝑐⟩))
127126notbid 317 . . . . . . . . 9 (𝑝 = ⟨𝑎, 𝑐⟩ → (¬ 𝑞𝑇𝑝 ↔ ¬ 𝑞𝑇𝑎, 𝑐⟩))
128127ralbidv 3120 . . . . . . . 8 (𝑝 = ⟨𝑎, 𝑐⟩ → (∀𝑞𝑠 ¬ 𝑞𝑇𝑝 ↔ ∀𝑞𝑠 ¬ 𝑞𝑇𝑎, 𝑐⟩))
129128rspcev 3552 . . . . . . 7 ((⟨𝑎, 𝑐⟩ ∈ 𝑠 ∧ ∀𝑞𝑠 ¬ 𝑞𝑇𝑎, 𝑐⟩) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝)
13060, 125, 129syl2anc 583 . . . . . 6 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝)
13155, 130rexlimddv 3219 . . . . 5 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝)
13228, 131rexlimddv 3219 . . . 4 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝)
133132ex 412 . . 3 (𝜑 → ((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝))
134133alrimiv 1931 . 2 (𝜑 → ∀𝑠((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝))
135 df-fr 5535 . 2 (𝑇 Fr (𝐴 × 𝐵) ↔ ∀𝑠((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝))
136134, 135sylibr 233 1 (𝜑𝑇 Fr (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  cin 3882  wss 3883  c0 4253  {csn 4558  cop 4564   class class class wbr 5070  {copab 5132   Fr wfr 5532   × cxp 5578  dom cdm 5580  ran crn 5581  cima 5583  Rel wrel 5585  cfv 6418  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-fr 5535  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805
This theorem is referenced by:  xpord2ind  33721  on2recsfn  33753  on2recsov  33754  noxpordfr  34035
  Copyright terms: Public domain W3C validator