| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dmss 5912 | . . . . . . . 8
⊢ (𝑠 ⊆ (𝐴 × 𝐵) → dom 𝑠 ⊆ dom (𝐴 × 𝐵)) | 
| 2 | 1 | ad2antrl 728 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ⊆ dom (𝐴 × 𝐵)) | 
| 3 |  | dmxpss 6190 | . . . . . . 7
⊢ dom
(𝐴 × 𝐵) ⊆ 𝐴 | 
| 4 | 2, 3 | sstrdi 3995 | . . . . . 6
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ⊆ 𝐴) | 
| 5 |  | simprr 772 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → 𝑠 ≠ ∅) | 
| 6 |  | relxp 5702 | . . . . . . . . . . 11
⊢ Rel
(𝐴 × 𝐵) | 
| 7 |  | relss 5790 | . . . . . . . . . . 11
⊢ (𝑠 ⊆ (𝐴 × 𝐵) → (Rel (𝐴 × 𝐵) → Rel 𝑠)) | 
| 8 | 6, 7 | mpi 20 | . . . . . . . . . 10
⊢ (𝑠 ⊆ (𝐴 × 𝐵) → Rel 𝑠) | 
| 9 | 8 | ad2antrl 728 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → Rel 𝑠) | 
| 10 |  | reldm0 5937 | . . . . . . . . 9
⊢ (Rel
𝑠 → (𝑠 = ∅ ↔ dom 𝑠 = ∅)) | 
| 11 | 9, 10 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → (𝑠 = ∅ ↔ dom 𝑠 = ∅)) | 
| 12 | 11 | necon3bid 2984 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → (𝑠 ≠ ∅ ↔ dom 𝑠 ≠ ∅)) | 
| 13 | 5, 12 | mpbid 232 | . . . . . 6
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ≠ ∅) | 
| 14 |  | frxp2.1 | . . . . . . . . 9
⊢ (𝜑 → 𝑅 Fr 𝐴) | 
| 15 | 14 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → 𝑅 Fr 𝐴) | 
| 16 |  | df-fr 5636 | . . . . . . . 8
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑐((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) → ∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎)) | 
| 17 | 15, 16 | sylib 218 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∀𝑐((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) → ∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎)) | 
| 18 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑠 ∈ V | 
| 19 | 18 | dmex 7932 | . . . . . . . 8
⊢ dom 𝑠 ∈ V | 
| 20 |  | sseq1 4008 | . . . . . . . . . 10
⊢ (𝑐 = dom 𝑠 → (𝑐 ⊆ 𝐴 ↔ dom 𝑠 ⊆ 𝐴)) | 
| 21 |  | neeq1 3002 | . . . . . . . . . 10
⊢ (𝑐 = dom 𝑠 → (𝑐 ≠ ∅ ↔ dom 𝑠 ≠ ∅)) | 
| 22 | 20, 21 | anbi12d 632 | . . . . . . . . 9
⊢ (𝑐 = dom 𝑠 → ((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) ↔ (dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅))) | 
| 23 |  | raleq 3322 | . . . . . . . . . 10
⊢ (𝑐 = dom 𝑠 → (∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎 ↔ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) | 
| 24 | 23 | rexeqbi1dv 3338 | . . . . . . . . 9
⊢ (𝑐 = dom 𝑠 → (∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎 ↔ ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) | 
| 25 | 22, 24 | imbi12d 344 | . . . . . . . 8
⊢ (𝑐 = dom 𝑠 → (((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) → ∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎) ↔ ((dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))) | 
| 26 | 19, 25 | spcv 3604 | . . . . . . 7
⊢
(∀𝑐((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) → ∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎) → ((dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) | 
| 27 | 17, 26 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ((dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) | 
| 28 | 4, 13, 27 | mp2and 699 | . . . . 5
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎) | 
| 29 |  | imassrn 6088 | . . . . . . . 8
⊢ (𝑠 “ {𝑎}) ⊆ ran 𝑠 | 
| 30 |  | rnss 5949 | . . . . . . . . . . 11
⊢ (𝑠 ⊆ (𝐴 × 𝐵) → ran 𝑠 ⊆ ran (𝐴 × 𝐵)) | 
| 31 | 30 | ad2antrl 728 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ran 𝑠 ⊆ ran (𝐴 × 𝐵)) | 
| 32 | 31 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ran 𝑠 ⊆ ran (𝐴 × 𝐵)) | 
| 33 |  | rnxpss 6191 | . . . . . . . . 9
⊢ ran
(𝐴 × 𝐵) ⊆ 𝐵 | 
| 34 | 32, 33 | sstrdi 3995 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ran 𝑠 ⊆ 𝐵) | 
| 35 | 29, 34 | sstrid 3994 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (𝑠 “ {𝑎}) ⊆ 𝐵) | 
| 36 |  | simprl 770 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → 𝑎 ∈ dom 𝑠) | 
| 37 |  | imadisj 6097 | . . . . . . . . . 10
⊢ ((𝑠 “ {𝑎}) = ∅ ↔ (dom 𝑠 ∩ {𝑎}) = ∅) | 
| 38 |  | disjsn 4710 | . . . . . . . . . 10
⊢ ((dom
𝑠 ∩ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠) | 
| 39 | 37, 38 | bitri 275 | . . . . . . . . 9
⊢ ((𝑠 “ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠) | 
| 40 | 39 | necon2abii 2990 | . . . . . . . 8
⊢ (𝑎 ∈ dom 𝑠 ↔ (𝑠 “ {𝑎}) ≠ ∅) | 
| 41 | 36, 40 | sylib 218 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (𝑠 “ {𝑎}) ≠ ∅) | 
| 42 |  | frxp2.2 | . . . . . . . . . 10
⊢ (𝜑 → 𝑆 Fr 𝐵) | 
| 43 |  | df-fr 5636 | . . . . . . . . . 10
⊢ (𝑆 Fr 𝐵 ↔ ∀𝑒((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐)) | 
| 44 | 42, 43 | sylib 218 | . . . . . . . . 9
⊢ (𝜑 → ∀𝑒((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐)) | 
| 45 | 44 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∀𝑒((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐)) | 
| 46 | 18 | imaex 7937 | . . . . . . . . 9
⊢ (𝑠 “ {𝑎}) ∈ V | 
| 47 |  | sseq1 4008 | . . . . . . . . . . 11
⊢ (𝑒 = (𝑠 “ {𝑎}) → (𝑒 ⊆ 𝐵 ↔ (𝑠 “ {𝑎}) ⊆ 𝐵)) | 
| 48 |  | neeq1 3002 | . . . . . . . . . . 11
⊢ (𝑒 = (𝑠 “ {𝑎}) → (𝑒 ≠ ∅ ↔ (𝑠 “ {𝑎}) ≠ ∅)) | 
| 49 | 47, 48 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑒 = (𝑠 “ {𝑎}) → ((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) ↔ ((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅))) | 
| 50 |  | raleq 3322 | . . . . . . . . . . 11
⊢ (𝑒 = (𝑠 “ {𝑎}) → (∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐 ↔ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) | 
| 51 | 50 | rexeqbi1dv 3338 | . . . . . . . . . 10
⊢ (𝑒 = (𝑠 “ {𝑎}) → (∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐 ↔ ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) | 
| 52 | 49, 51 | imbi12d 344 | . . . . . . . . 9
⊢ (𝑒 = (𝑠 “ {𝑎}) → (((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐) ↔ (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))) | 
| 53 | 46, 52 | spcv 3604 | . . . . . . . 8
⊢
(∀𝑒((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐) → (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) | 
| 54 | 45, 53 | syl 17 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) | 
| 55 | 35, 41, 54 | mp2and 699 | . . . . . 6
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐) | 
| 56 |  | breq2 5146 | . . . . . . . . 9
⊢ (𝑝 = 〈𝑎, 𝑐〉 → (𝑞𝑇𝑝 ↔ 𝑞𝑇〈𝑎, 𝑐〉)) | 
| 57 | 56 | notbid 318 | . . . . . . . 8
⊢ (𝑝 = 〈𝑎, 𝑐〉 → (¬ 𝑞𝑇𝑝 ↔ ¬ 𝑞𝑇〈𝑎, 𝑐〉)) | 
| 58 | 57 | ralbidv 3177 | . . . . . . 7
⊢ (𝑝 = 〈𝑎, 𝑐〉 → (∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝 ↔ ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇〈𝑎, 𝑐〉)) | 
| 59 |  | simprl 770 | . . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → 𝑐 ∈ (𝑠 “ {𝑎})) | 
| 60 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑎 ∈ V | 
| 61 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑐 ∈ V | 
| 62 | 60, 61 | elimasn 6107 | . . . . . . . 8
⊢ (𝑐 ∈ (𝑠 “ {𝑎}) ↔ 〈𝑎, 𝑐〉 ∈ 𝑠) | 
| 63 | 59, 62 | sylib 218 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → 〈𝑎, 𝑐〉 ∈ 𝑠) | 
| 64 | 9 | ad2antrr 726 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → Rel 𝑠) | 
| 65 |  | elrel 5807 | . . . . . . . . . 10
⊢ ((Rel
𝑠 ∧ 𝑞 ∈ 𝑠) → ∃𝑒∃𝑓 𝑞 = 〈𝑒, 𝑓〉) | 
| 66 | 64, 65 | sylan 580 | . . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → ∃𝑒∃𝑓 𝑞 = 〈𝑒, 𝑓〉) | 
| 67 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 = 𝑓 → (𝑑𝑆𝑐 ↔ 𝑓𝑆𝑐)) | 
| 68 | 67 | notbid 318 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑓 → (¬ 𝑑𝑆𝑐 ↔ ¬ 𝑓𝑆𝑐)) | 
| 69 |  | simplrr 777 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐) | 
| 70 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑓 ∈ V | 
| 71 | 60, 70 | elimasn 6107 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ (𝑠 “ {𝑎}) ↔ 〈𝑎, 𝑓〉 ∈ 𝑠) | 
| 72 | 71 | biimpri 228 | . . . . . . . . . . . . . . . . . . 19
⊢
(〈𝑎, 𝑓〉 ∈ 𝑠 → 𝑓 ∈ (𝑠 “ {𝑎})) | 
| 73 | 72 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → 𝑓 ∈ (𝑠 “ {𝑎})) | 
| 74 | 68, 69, 73 | rspcdva 3622 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → ¬ 𝑓𝑆𝑐) | 
| 75 | 74 | intnanrd 489 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → ¬ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐)) | 
| 76 |  | opeq1 4872 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑎 → 〈𝑒, 𝑓〉 = 〈𝑎, 𝑓〉) | 
| 77 | 76 | eleq1d 2825 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑎 → (〈𝑒, 𝑓〉 ∈ 𝑠 ↔ 〈𝑎, 𝑓〉 ∈ 𝑠)) | 
| 78 | 77 | anbi2d 630 | . . . . . . . . . . . . . . . . 17
⊢ (𝑒 = 𝑎 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ↔ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠))) | 
| 79 |  | 3anass 1094 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))) | 
| 80 |  | olc 868 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑎 → (𝑒𝑅𝑎 ∨ 𝑒 = 𝑎)) | 
| 81 | 80 | biantrurd 532 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑎 → (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))))) | 
| 82 |  | neeq1 3002 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑒 = 𝑎 → (𝑒 ≠ 𝑎 ↔ 𝑎 ≠ 𝑎)) | 
| 83 | 82 | orbi1d 916 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 = 𝑎 → ((𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐) ↔ (𝑎 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) | 
| 84 |  | neirr 2948 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢  ¬
𝑎 ≠ 𝑎 | 
| 85 | 84 | biorfi 938 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 ≠ 𝑐 ↔ (𝑎 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) | 
| 86 | 83, 85 | bitr4di 289 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑒 = 𝑎 → ((𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐) ↔ 𝑓 ≠ 𝑐)) | 
| 87 | 86 | anbi2d 630 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑎 → (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ ((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ 𝑓 ≠ 𝑐))) | 
| 88 |  | andir 1010 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ 𝑓 ≠ 𝑐) ↔ ((𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐) ∨ (𝑓 = 𝑐 ∧ 𝑓 ≠ 𝑐))) | 
| 89 |  | nonconne 2951 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢  ¬
(𝑓 = 𝑐 ∧ 𝑓 ≠ 𝑐) | 
| 90 | 89 | biorfri 939 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐) ↔ ((𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐) ∨ (𝑓 = 𝑐 ∧ 𝑓 ≠ 𝑐))) | 
| 91 | 88, 90 | bitr4i 278 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ 𝑓 ≠ 𝑐) ↔ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐)) | 
| 92 | 87, 91 | bitrdi 287 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑎 → (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐))) | 
| 93 | 81, 92 | bitr3d 281 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑎 → (((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) ↔ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐))) | 
| 94 | 79, 93 | bitrid 283 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑎 → (((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐))) | 
| 95 | 94 | notbid 318 | . . . . . . . . . . . . . . . . 17
⊢ (𝑒 = 𝑎 → (¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ ¬ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐))) | 
| 96 | 78, 95 | imbi12d 344 | . . . . . . . . . . . . . . . 16
⊢ (𝑒 = 𝑎 → ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) ↔ (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → ¬ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐)))) | 
| 97 | 75, 96 | mpbiri 258 | . . . . . . . . . . . . . . 15
⊢ (𝑒 = 𝑎 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))) | 
| 98 | 97 | impcom 407 | . . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 = 𝑎) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) | 
| 99 |  | breq1 5145 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑒 → (𝑏𝑅𝑎 ↔ 𝑒𝑅𝑎)) | 
| 100 | 99 | notbid 318 | . . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑒 → (¬ 𝑏𝑅𝑎 ↔ ¬ 𝑒𝑅𝑎)) | 
| 101 |  | simplrr 777 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎) | 
| 102 | 101 | ad2antrr 726 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎) | 
| 103 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . 20
⊢ 𝑒 ∈ V | 
| 104 | 103, 70 | opeldm 5917 | . . . . . . . . . . . . . . . . . . 19
⊢
(〈𝑒, 𝑓〉 ∈ 𝑠 → 𝑒 ∈ dom 𝑠) | 
| 105 | 104 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → 𝑒 ∈ dom 𝑠) | 
| 106 | 105 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → 𝑒 ∈ dom 𝑠) | 
| 107 | 100, 102,
106 | rspcdva 3622 | . . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ¬ 𝑒𝑅𝑎) | 
| 108 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → 𝑒 ≠ 𝑎) | 
| 109 | 108 | neneqd 2944 | . . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ¬ 𝑒 = 𝑎) | 
| 110 |  | ioran 985 | . . . . . . . . . . . . . . . 16
⊢ (¬
(𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ↔ (¬ 𝑒𝑅𝑎 ∧ ¬ 𝑒 = 𝑎)) | 
| 111 | 107, 109,
110 | sylanbrc 583 | . . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ¬ (𝑒𝑅𝑎 ∨ 𝑒 = 𝑎)) | 
| 112 | 111 | intn3an1d 1480 | . . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) | 
| 113 | 98, 112 | pm2.61dane 3028 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) | 
| 114 | 113 | intn3an3d 1482 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))) | 
| 115 |  | eleq1 2828 | . . . . . . . . . . . . . 14
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (𝑞 ∈ 𝑠 ↔ 〈𝑒, 𝑓〉 ∈ 𝑠)) | 
| 116 | 115 | anbi2d 630 | . . . . . . . . . . . . 13
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) ↔ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠))) | 
| 117 |  | breq1 5145 | . . . . . . . . . . . . . . 15
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (𝑞𝑇〈𝑎, 𝑐〉 ↔ 〈𝑒, 𝑓〉𝑇〈𝑎, 𝑐〉)) | 
| 118 |  | xpord2.1 | . . . . . . . . . . . . . . . 16
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd
‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} | 
| 119 | 118 | xpord2lem 8168 | . . . . . . . . . . . . . . 15
⊢
(〈𝑒, 𝑓〉𝑇〈𝑎, 𝑐〉 ↔ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))) | 
| 120 | 117, 119 | bitrdi 287 | . . . . . . . . . . . . . 14
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (𝑞𝑇〈𝑎, 𝑐〉 ↔ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))))) | 
| 121 | 120 | notbid 318 | . . . . . . . . . . . . 13
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (¬ 𝑞𝑇〈𝑎, 𝑐〉 ↔ ¬ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))))) | 
| 122 | 116, 121 | imbi12d 344 | . . . . . . . . . . . 12
⊢ (𝑞 = 〈𝑒, 𝑓〉 → ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → ¬ 𝑞𝑇〈𝑎, 𝑐〉) ↔ (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))))) | 
| 123 | 114, 122 | mpbiri 258 | . . . . . . . . . . 11
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → ¬ 𝑞𝑇〈𝑎, 𝑐〉)) | 
| 124 | 123 | com12 32 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → (𝑞 = 〈𝑒, 𝑓〉 → ¬ 𝑞𝑇〈𝑎, 𝑐〉)) | 
| 125 | 124 | exlimdvv 1933 | . . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → (∃𝑒∃𝑓 𝑞 = 〈𝑒, 𝑓〉 → ¬ 𝑞𝑇〈𝑎, 𝑐〉)) | 
| 126 | 66, 125 | mpd 15 | . . . . . . . 8
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → ¬ 𝑞𝑇〈𝑎, 𝑐〉) | 
| 127 | 126 | ralrimiva 3145 | . . . . . . 7
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇〈𝑎, 𝑐〉) | 
| 128 | 58, 63, 127 | rspcedvdw 3624 | . . . . . 6
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝) | 
| 129 | 55, 128 | rexlimddv 3160 | . . . . 5
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝) | 
| 130 | 28, 129 | rexlimddv 3160 | . . . 4
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝) | 
| 131 | 130 | ex 412 | . . 3
⊢ (𝜑 → ((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝)) | 
| 132 | 131 | alrimiv 1926 | . 2
⊢ (𝜑 → ∀𝑠((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝)) | 
| 133 |  | df-fr 5636 | . 2
⊢ (𝑇 Fr (𝐴 × 𝐵) ↔ ∀𝑠((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝)) | 
| 134 | 132, 133 | sylibr 234 | 1
⊢ (𝜑 → 𝑇 Fr (𝐴 × 𝐵)) |