| Step | Hyp | Ref
| Expression |
| 1 | | dmss 5887 |
. . . . . . . 8
⊢ (𝑠 ⊆ (𝐴 × 𝐵) → dom 𝑠 ⊆ dom (𝐴 × 𝐵)) |
| 2 | 1 | ad2antrl 728 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ⊆ dom (𝐴 × 𝐵)) |
| 3 | | dmxpss 6165 |
. . . . . . 7
⊢ dom
(𝐴 × 𝐵) ⊆ 𝐴 |
| 4 | 2, 3 | sstrdi 3976 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ⊆ 𝐴) |
| 5 | | simprr 772 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → 𝑠 ≠ ∅) |
| 6 | | relxp 5677 |
. . . . . . . . . . 11
⊢ Rel
(𝐴 × 𝐵) |
| 7 | | relss 5765 |
. . . . . . . . . . 11
⊢ (𝑠 ⊆ (𝐴 × 𝐵) → (Rel (𝐴 × 𝐵) → Rel 𝑠)) |
| 8 | 6, 7 | mpi 20 |
. . . . . . . . . 10
⊢ (𝑠 ⊆ (𝐴 × 𝐵) → Rel 𝑠) |
| 9 | 8 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → Rel 𝑠) |
| 10 | | reldm0 5912 |
. . . . . . . . 9
⊢ (Rel
𝑠 → (𝑠 = ∅ ↔ dom 𝑠 = ∅)) |
| 11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → (𝑠 = ∅ ↔ dom 𝑠 = ∅)) |
| 12 | 11 | necon3bid 2977 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → (𝑠 ≠ ∅ ↔ dom 𝑠 ≠ ∅)) |
| 13 | 5, 12 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ≠ ∅) |
| 14 | | frxp2.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 Fr 𝐴) |
| 15 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → 𝑅 Fr 𝐴) |
| 16 | | df-fr 5611 |
. . . . . . . 8
⊢ (𝑅 Fr 𝐴 ↔ ∀𝑐((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) → ∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎)) |
| 17 | 15, 16 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∀𝑐((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) → ∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎)) |
| 18 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑠 ∈ V |
| 19 | 18 | dmex 7910 |
. . . . . . . 8
⊢ dom 𝑠 ∈ V |
| 20 | | sseq1 3989 |
. . . . . . . . . 10
⊢ (𝑐 = dom 𝑠 → (𝑐 ⊆ 𝐴 ↔ dom 𝑠 ⊆ 𝐴)) |
| 21 | | neeq1 2995 |
. . . . . . . . . 10
⊢ (𝑐 = dom 𝑠 → (𝑐 ≠ ∅ ↔ dom 𝑠 ≠ ∅)) |
| 22 | 20, 21 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑐 = dom 𝑠 → ((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) ↔ (dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅))) |
| 23 | | raleq 3306 |
. . . . . . . . . 10
⊢ (𝑐 = dom 𝑠 → (∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎 ↔ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) |
| 24 | 23 | rexeqbi1dv 3322 |
. . . . . . . . 9
⊢ (𝑐 = dom 𝑠 → (∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎 ↔ ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) |
| 25 | 22, 24 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑐 = dom 𝑠 → (((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) → ∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎) ↔ ((dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))) |
| 26 | 19, 25 | spcv 3589 |
. . . . . . 7
⊢
(∀𝑐((𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅) → ∃𝑎 ∈ 𝑐 ∀𝑏 ∈ 𝑐 ¬ 𝑏𝑅𝑎) → ((dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) |
| 27 | 17, 26 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ((dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) |
| 28 | 4, 13, 27 | mp2and 699 |
. . . . 5
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∃𝑎 ∈ dom 𝑠∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎) |
| 29 | | imassrn 6063 |
. . . . . . . 8
⊢ (𝑠 “ {𝑎}) ⊆ ran 𝑠 |
| 30 | | rnss 5924 |
. . . . . . . . . . 11
⊢ (𝑠 ⊆ (𝐴 × 𝐵) → ran 𝑠 ⊆ ran (𝐴 × 𝐵)) |
| 31 | 30 | ad2antrl 728 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ran 𝑠 ⊆ ran (𝐴 × 𝐵)) |
| 32 | 31 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ran 𝑠 ⊆ ran (𝐴 × 𝐵)) |
| 33 | | rnxpss 6166 |
. . . . . . . . 9
⊢ ran
(𝐴 × 𝐵) ⊆ 𝐵 |
| 34 | 32, 33 | sstrdi 3976 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ran 𝑠 ⊆ 𝐵) |
| 35 | 29, 34 | sstrid 3975 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (𝑠 “ {𝑎}) ⊆ 𝐵) |
| 36 | | simprl 770 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → 𝑎 ∈ dom 𝑠) |
| 37 | | imadisj 6072 |
. . . . . . . . . 10
⊢ ((𝑠 “ {𝑎}) = ∅ ↔ (dom 𝑠 ∩ {𝑎}) = ∅) |
| 38 | | disjsn 4692 |
. . . . . . . . . 10
⊢ ((dom
𝑠 ∩ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠) |
| 39 | 37, 38 | bitri 275 |
. . . . . . . . 9
⊢ ((𝑠 “ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠) |
| 40 | 39 | necon2abii 2983 |
. . . . . . . 8
⊢ (𝑎 ∈ dom 𝑠 ↔ (𝑠 “ {𝑎}) ≠ ∅) |
| 41 | 36, 40 | sylib 218 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (𝑠 “ {𝑎}) ≠ ∅) |
| 42 | | frxp2.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 Fr 𝐵) |
| 43 | | df-fr 5611 |
. . . . . . . . . 10
⊢ (𝑆 Fr 𝐵 ↔ ∀𝑒((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐)) |
| 44 | 42, 43 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑒((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐)) |
| 45 | 44 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∀𝑒((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐)) |
| 46 | 18 | imaex 7915 |
. . . . . . . . 9
⊢ (𝑠 “ {𝑎}) ∈ V |
| 47 | | sseq1 3989 |
. . . . . . . . . . 11
⊢ (𝑒 = (𝑠 “ {𝑎}) → (𝑒 ⊆ 𝐵 ↔ (𝑠 “ {𝑎}) ⊆ 𝐵)) |
| 48 | | neeq1 2995 |
. . . . . . . . . . 11
⊢ (𝑒 = (𝑠 “ {𝑎}) → (𝑒 ≠ ∅ ↔ (𝑠 “ {𝑎}) ≠ ∅)) |
| 49 | 47, 48 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑒 = (𝑠 “ {𝑎}) → ((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) ↔ ((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅))) |
| 50 | | raleq 3306 |
. . . . . . . . . . 11
⊢ (𝑒 = (𝑠 “ {𝑎}) → (∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐 ↔ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) |
| 51 | 50 | rexeqbi1dv 3322 |
. . . . . . . . . 10
⊢ (𝑒 = (𝑠 “ {𝑎}) → (∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐 ↔ ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) |
| 52 | 49, 51 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑒 = (𝑠 “ {𝑎}) → (((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐) ↔ (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))) |
| 53 | 46, 52 | spcv 3589 |
. . . . . . . 8
⊢
(∀𝑒((𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅) → ∃𝑐 ∈ 𝑒 ∀𝑑 ∈ 𝑒 ¬ 𝑑𝑆𝑐) → (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) |
| 54 | 45, 53 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) |
| 55 | 35, 41, 54 | mp2and 699 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐) |
| 56 | | breq2 5128 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑎, 𝑐〉 → (𝑞𝑇𝑝 ↔ 𝑞𝑇〈𝑎, 𝑐〉)) |
| 57 | 56 | notbid 318 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑎, 𝑐〉 → (¬ 𝑞𝑇𝑝 ↔ ¬ 𝑞𝑇〈𝑎, 𝑐〉)) |
| 58 | 57 | ralbidv 3164 |
. . . . . . 7
⊢ (𝑝 = 〈𝑎, 𝑐〉 → (∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝 ↔ ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇〈𝑎, 𝑐〉)) |
| 59 | | simprl 770 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → 𝑐 ∈ (𝑠 “ {𝑎})) |
| 60 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑎 ∈ V |
| 61 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑐 ∈ V |
| 62 | 60, 61 | elimasn 6082 |
. . . . . . . 8
⊢ (𝑐 ∈ (𝑠 “ {𝑎}) ↔ 〈𝑎, 𝑐〉 ∈ 𝑠) |
| 63 | 59, 62 | sylib 218 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → 〈𝑎, 𝑐〉 ∈ 𝑠) |
| 64 | 9 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → Rel 𝑠) |
| 65 | | elrel 5782 |
. . . . . . . . . 10
⊢ ((Rel
𝑠 ∧ 𝑞 ∈ 𝑠) → ∃𝑒∃𝑓 𝑞 = 〈𝑒, 𝑓〉) |
| 66 | 64, 65 | sylan 580 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → ∃𝑒∃𝑓 𝑞 = 〈𝑒, 𝑓〉) |
| 67 | | breq1 5127 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑑 = 𝑓 → (𝑑𝑆𝑐 ↔ 𝑓𝑆𝑐)) |
| 68 | 67 | notbid 318 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑 = 𝑓 → (¬ 𝑑𝑆𝑐 ↔ ¬ 𝑓𝑆𝑐)) |
| 69 | | simplrr 777 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐) |
| 70 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑓 ∈ V |
| 71 | 60, 70 | elimasn 6082 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ (𝑠 “ {𝑎}) ↔ 〈𝑎, 𝑓〉 ∈ 𝑠) |
| 72 | 71 | biimpri 228 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈𝑎, 𝑓〉 ∈ 𝑠 → 𝑓 ∈ (𝑠 “ {𝑎})) |
| 73 | 72 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → 𝑓 ∈ (𝑠 “ {𝑎})) |
| 74 | 68, 69, 73 | rspcdva 3607 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → ¬ 𝑓𝑆𝑐) |
| 75 | 74 | intnanrd 489 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → ¬ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐)) |
| 76 | | opeq1 4854 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑎 → 〈𝑒, 𝑓〉 = 〈𝑎, 𝑓〉) |
| 77 | 76 | eleq1d 2820 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑎 → (〈𝑒, 𝑓〉 ∈ 𝑠 ↔ 〈𝑎, 𝑓〉 ∈ 𝑠)) |
| 78 | 77 | anbi2d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = 𝑎 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ↔ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠))) |
| 79 | | 3anass 1094 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))) |
| 80 | | olc 868 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑎 → (𝑒𝑅𝑎 ∨ 𝑒 = 𝑎)) |
| 81 | 80 | biantrurd 532 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑎 → (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))))) |
| 82 | | neeq1 2995 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑒 = 𝑎 → (𝑒 ≠ 𝑎 ↔ 𝑎 ≠ 𝑎)) |
| 83 | 82 | orbi1d 916 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 = 𝑎 → ((𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐) ↔ (𝑎 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) |
| 84 | | neirr 2942 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ¬
𝑎 ≠ 𝑎 |
| 85 | 84 | biorfi 938 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 ≠ 𝑐 ↔ (𝑎 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) |
| 86 | 83, 85 | bitr4di 289 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑒 = 𝑎 → ((𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐) ↔ 𝑓 ≠ 𝑐)) |
| 87 | 86 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = 𝑎 → (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ ((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ 𝑓 ≠ 𝑐))) |
| 88 | | andir 1010 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ 𝑓 ≠ 𝑐) ↔ ((𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐) ∨ (𝑓 = 𝑐 ∧ 𝑓 ≠ 𝑐))) |
| 89 | | nonconne 2945 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ¬
(𝑓 = 𝑐 ∧ 𝑓 ≠ 𝑐) |
| 90 | 89 | biorfri 939 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐) ↔ ((𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐) ∨ (𝑓 = 𝑐 ∧ 𝑓 ≠ 𝑐))) |
| 91 | 88, 90 | bitr4i 278 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ 𝑓 ≠ 𝑐) ↔ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐)) |
| 92 | 87, 91 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑎 → (((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐))) |
| 93 | 81, 92 | bitr3d 281 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑎 → (((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) ↔ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐))) |
| 94 | 79, 93 | bitrid 283 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑎 → (((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐))) |
| 95 | 94 | notbid 318 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = 𝑎 → (¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)) ↔ ¬ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐))) |
| 96 | 78, 95 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = 𝑎 → ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) ↔ (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑎, 𝑓〉 ∈ 𝑠) → ¬ (𝑓𝑆𝑐 ∧ 𝑓 ≠ 𝑐)))) |
| 97 | 75, 96 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = 𝑎 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))) |
| 98 | 97 | impcom 407 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 = 𝑎) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) |
| 99 | | breq1 5127 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑒 → (𝑏𝑅𝑎 ↔ 𝑒𝑅𝑎)) |
| 100 | 99 | notbid 318 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑒 → (¬ 𝑏𝑅𝑎 ↔ ¬ 𝑒𝑅𝑎)) |
| 101 | | simplrr 777 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎) |
| 102 | 101 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎) |
| 103 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑒 ∈ V |
| 104 | 103, 70 | opeldm 5892 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈𝑒, 𝑓〉 ∈ 𝑠 → 𝑒 ∈ dom 𝑠) |
| 105 | 104 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → 𝑒 ∈ dom 𝑠) |
| 106 | 105 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → 𝑒 ∈ dom 𝑠) |
| 107 | 100, 102,
106 | rspcdva 3607 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ¬ 𝑒𝑅𝑎) |
| 108 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → 𝑒 ≠ 𝑎) |
| 109 | 108 | neneqd 2938 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ¬ 𝑒 = 𝑎) |
| 110 | | ioran 985 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ↔ (¬ 𝑒𝑅𝑎 ∧ ¬ 𝑒 = 𝑎)) |
| 111 | 107, 109,
110 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ¬ (𝑒𝑅𝑎 ∨ 𝑒 = 𝑎)) |
| 112 | 111 | intn3an1d 1481 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) ∧ 𝑒 ≠ 𝑎) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) |
| 113 | 98, 112 | pm2.61dane 3020 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))) |
| 114 | 113 | intn3an3d 1483 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))) |
| 115 | | eleq1 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (𝑞 ∈ 𝑠 ↔ 〈𝑒, 𝑓〉 ∈ 𝑠)) |
| 116 | 115 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) ↔ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠))) |
| 117 | | breq1 5127 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (𝑞𝑇〈𝑎, 𝑐〉 ↔ 〈𝑒, 𝑓〉𝑇〈𝑎, 𝑐〉)) |
| 118 | | xpord2.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd
‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} |
| 119 | 118 | xpord2lem 8146 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑒, 𝑓〉𝑇〈𝑎, 𝑐〉 ↔ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))) |
| 120 | 117, 119 | bitrdi 287 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (𝑞𝑇〈𝑎, 𝑐〉 ↔ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))))) |
| 121 | 120 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (¬ 𝑞𝑇〈𝑎, 𝑐〉 ↔ ¬ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐))))) |
| 122 | 116, 121 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑞 = 〈𝑒, 𝑓〉 → ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → ¬ 𝑞𝑇〈𝑎, 𝑐〉) ↔ (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 〈𝑒, 𝑓〉 ∈ 𝑠) → ¬ ((𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵) ∧ ((𝑒𝑅𝑎 ∨ 𝑒 = 𝑎) ∧ (𝑓𝑆𝑐 ∨ 𝑓 = 𝑐) ∧ (𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐)))))) |
| 123 | 114, 122 | mpbiri 258 |
. . . . . . . . . . 11
⊢ (𝑞 = 〈𝑒, 𝑓〉 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → ¬ 𝑞𝑇〈𝑎, 𝑐〉)) |
| 124 | 123 | com12 32 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → (𝑞 = 〈𝑒, 𝑓〉 → ¬ 𝑞𝑇〈𝑎, 𝑐〉)) |
| 125 | 124 | exlimdvv 1934 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → (∃𝑒∃𝑓 𝑞 = 〈𝑒, 𝑓〉 → ¬ 𝑞𝑇〈𝑎, 𝑐〉)) |
| 126 | 66, 125 | mpd 15 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞 ∈ 𝑠) → ¬ 𝑞𝑇〈𝑎, 𝑐〉) |
| 127 | 126 | ralrimiva 3133 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇〈𝑎, 𝑐〉) |
| 128 | 58, 63, 127 | rspcedvdw 3609 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝) |
| 129 | 55, 128 | rexlimddv 3148 |
. . . . 5
⊢ (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝) |
| 130 | 28, 129 | rexlimddv 3148 |
. . . 4
⊢ ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝) |
| 131 | 130 | ex 412 |
. . 3
⊢ (𝜑 → ((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝)) |
| 132 | 131 | alrimiv 1927 |
. 2
⊢ (𝜑 → ∀𝑠((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝)) |
| 133 | | df-fr 5611 |
. 2
⊢ (𝑇 Fr (𝐴 × 𝐵) ↔ ∀𝑠((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ¬ 𝑞𝑇𝑝)) |
| 134 | 132, 133 | sylibr 234 |
1
⊢ (𝜑 → 𝑇 Fr (𝐴 × 𝐵)) |