Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frxp2 Structured version   Visualization version   GIF version

Theorem frxp2 33358
Description: Another way of giving a founded order to a cross product of two classes. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
xpord2.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
frxp2.1 (𝜑𝑅 Fr 𝐴)
frxp2.2 (𝜑𝑆 Fr 𝐵)
Assertion
Ref Expression
frxp2 (𝜑𝑇 Fr (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem frxp2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑝 𝑞 𝑠 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmss 5748 . . . . . . . 8 (𝑠 ⊆ (𝐴 × 𝐵) → dom 𝑠 ⊆ dom (𝐴 × 𝐵))
21ad2antrl 727 . . . . . . 7 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ⊆ dom (𝐴 × 𝐵))
3 dmxpss 6005 . . . . . . 7 dom (𝐴 × 𝐵) ⊆ 𝐴
42, 3sstrdi 3906 . . . . . 6 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠𝐴)
5 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → 𝑠 ≠ ∅)
6 relxp 5546 . . . . . . . . . . 11 Rel (𝐴 × 𝐵)
7 relss 5630 . . . . . . . . . . 11 (𝑠 ⊆ (𝐴 × 𝐵) → (Rel (𝐴 × 𝐵) → Rel 𝑠))
86, 7mpi 20 . . . . . . . . . 10 (𝑠 ⊆ (𝐴 × 𝐵) → Rel 𝑠)
98ad2antrl 727 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → Rel 𝑠)
10 reldm0 5774 . . . . . . . . 9 (Rel 𝑠 → (𝑠 = ∅ ↔ dom 𝑠 = ∅))
119, 10syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → (𝑠 = ∅ ↔ dom 𝑠 = ∅))
1211necon3bid 2995 . . . . . . 7 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → (𝑠 ≠ ∅ ↔ dom 𝑠 ≠ ∅))
135, 12mpbid 235 . . . . . 6 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → dom 𝑠 ≠ ∅)
14 frxp2.1 . . . . . . . . 9 (𝜑𝑅 Fr 𝐴)
1514adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → 𝑅 Fr 𝐴)
16 df-fr 5487 . . . . . . . 8 (𝑅 Fr 𝐴 ↔ ∀𝑐((𝑐𝐴𝑐 ≠ ∅) → ∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎))
1715, 16sylib 221 . . . . . . 7 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∀𝑐((𝑐𝐴𝑐 ≠ ∅) → ∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎))
18 vex 3413 . . . . . . . . 9 𝑠 ∈ V
1918dmex 7627 . . . . . . . 8 dom 𝑠 ∈ V
20 sseq1 3919 . . . . . . . . . 10 (𝑐 = dom 𝑠 → (𝑐𝐴 ↔ dom 𝑠𝐴))
21 neeq1 3013 . . . . . . . . . 10 (𝑐 = dom 𝑠 → (𝑐 ≠ ∅ ↔ dom 𝑠 ≠ ∅))
2220, 21anbi12d 633 . . . . . . . . 9 (𝑐 = dom 𝑠 → ((𝑐𝐴𝑐 ≠ ∅) ↔ (dom 𝑠𝐴 ∧ dom 𝑠 ≠ ∅)))
23 raleq 3323 . . . . . . . . . 10 (𝑐 = dom 𝑠 → (∀𝑏𝑐 ¬ 𝑏𝑅𝑎 ↔ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))
2423rexeqbi1dv 3322 . . . . . . . . 9 (𝑐 = dom 𝑠 → (∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎 ↔ ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))
2522, 24imbi12d 348 . . . . . . . 8 (𝑐 = dom 𝑠 → (((𝑐𝐴𝑐 ≠ ∅) → ∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎) ↔ ((dom 𝑠𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)))
2619, 25spcv 3526 . . . . . . 7 (∀𝑐((𝑐𝐴𝑐 ≠ ∅) → ∃𝑎𝑐𝑏𝑐 ¬ 𝑏𝑅𝑎) → ((dom 𝑠𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))
2717, 26syl 17 . . . . . 6 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ((dom 𝑠𝐴 ∧ dom 𝑠 ≠ ∅) → ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎))
284, 13, 27mp2and 698 . . . . 5 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∃𝑎 ∈ dom 𝑠𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)
29 imassrn 5917 . . . . . . . 8 (𝑠 “ {𝑎}) ⊆ ran 𝑠
30 rnss 5785 . . . . . . . . . . 11 (𝑠 ⊆ (𝐴 × 𝐵) → ran 𝑠 ⊆ ran (𝐴 × 𝐵))
3130ad2antrl 727 . . . . . . . . . 10 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ran 𝑠 ⊆ ran (𝐴 × 𝐵))
3231adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ran 𝑠 ⊆ ran (𝐴 × 𝐵))
33 rnxpss 6006 . . . . . . . . 9 ran (𝐴 × 𝐵) ⊆ 𝐵
3432, 33sstrdi 3906 . . . . . . . 8 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ran 𝑠𝐵)
3529, 34sstrid 3905 . . . . . . 7 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (𝑠 “ {𝑎}) ⊆ 𝐵)
36 simprl 770 . . . . . . . 8 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → 𝑎 ∈ dom 𝑠)
37 imadisj 5925 . . . . . . . . . 10 ((𝑠 “ {𝑎}) = ∅ ↔ (dom 𝑠 ∩ {𝑎}) = ∅)
38 disjsn 4607 . . . . . . . . . 10 ((dom 𝑠 ∩ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠)
3937, 38bitri 278 . . . . . . . . 9 ((𝑠 “ {𝑎}) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠)
4039necon2abii 3001 . . . . . . . 8 (𝑎 ∈ dom 𝑠 ↔ (𝑠 “ {𝑎}) ≠ ∅)
4136, 40sylib 221 . . . . . . 7 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (𝑠 “ {𝑎}) ≠ ∅)
42 frxp2.2 . . . . . . . . . 10 (𝜑𝑆 Fr 𝐵)
43 df-fr 5487 . . . . . . . . . 10 (𝑆 Fr 𝐵 ↔ ∀𝑒((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐))
4442, 43sylib 221 . . . . . . . . 9 (𝜑 → ∀𝑒((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐))
4544ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∀𝑒((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐))
4618imaex 7632 . . . . . . . . 9 (𝑠 “ {𝑎}) ∈ V
47 sseq1 3919 . . . . . . . . . . 11 (𝑒 = (𝑠 “ {𝑎}) → (𝑒𝐵 ↔ (𝑠 “ {𝑎}) ⊆ 𝐵))
48 neeq1 3013 . . . . . . . . . . 11 (𝑒 = (𝑠 “ {𝑎}) → (𝑒 ≠ ∅ ↔ (𝑠 “ {𝑎}) ≠ ∅))
4947, 48anbi12d 633 . . . . . . . . . 10 (𝑒 = (𝑠 “ {𝑎}) → ((𝑒𝐵𝑒 ≠ ∅) ↔ ((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅)))
50 raleq 3323 . . . . . . . . . . 11 (𝑒 = (𝑠 “ {𝑎}) → (∀𝑑𝑒 ¬ 𝑑𝑆𝑐 ↔ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))
5150rexeqbi1dv 3322 . . . . . . . . . 10 (𝑒 = (𝑠 “ {𝑎}) → (∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐 ↔ ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))
5249, 51imbi12d 348 . . . . . . . . 9 (𝑒 = (𝑠 “ {𝑎}) → (((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐) ↔ (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)))
5346, 52spcv 3526 . . . . . . . 8 (∀𝑒((𝑒𝐵𝑒 ≠ ∅) → ∃𝑐𝑒𝑑𝑒 ¬ 𝑑𝑆𝑐) → (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))
5445, 53syl 17 . . . . . . 7 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → (((𝑠 “ {𝑎}) ⊆ 𝐵 ∧ (𝑠 “ {𝑎}) ≠ ∅) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐))
5535, 41, 54mp2and 698 . . . . . 6 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∃𝑐 ∈ (𝑠 “ {𝑎})∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)
56 simprl 770 . . . . . . . 8 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → 𝑐 ∈ (𝑠 “ {𝑎}))
57 vex 3413 . . . . . . . . 9 𝑎 ∈ V
58 vex 3413 . . . . . . . . 9 𝑐 ∈ V
5957, 58elimasn 5931 . . . . . . . 8 (𝑐 ∈ (𝑠 “ {𝑎}) ↔ ⟨𝑎, 𝑐⟩ ∈ 𝑠)
6056, 59sylib 221 . . . . . . 7 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ⟨𝑎, 𝑐⟩ ∈ 𝑠)
619ad2antrr 725 . . . . . . . . . 10 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → Rel 𝑠)
62 elrel 5645 . . . . . . . . . 10 ((Rel 𝑠𝑞𝑠) → ∃𝑒𝑓 𝑞 = ⟨𝑒, 𝑓⟩)
6361, 62sylan 583 . . . . . . . . 9 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → ∃𝑒𝑓 𝑞 = ⟨𝑒, 𝑓⟩)
64 breq1 5039 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑓 → (𝑑𝑆𝑐𝑓𝑆𝑐))
6564notbid 321 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑓 → (¬ 𝑑𝑆𝑐 ↔ ¬ 𝑓𝑆𝑐))
66 simplrr 777 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)
67 vex 3413 . . . . . . . . . . . . . . . . . . . . 21 𝑓 ∈ V
6857, 67elimasn 5931 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (𝑠 “ {𝑎}) ↔ ⟨𝑎, 𝑓⟩ ∈ 𝑠)
6968biimpri 231 . . . . . . . . . . . . . . . . . . 19 (⟨𝑎, 𝑓⟩ ∈ 𝑠𝑓 ∈ (𝑠 “ {𝑎}))
7069adantl 485 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → 𝑓 ∈ (𝑠 “ {𝑎}))
7165, 66, 70rspcdva 3545 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → ¬ 𝑓𝑆𝑐)
7271intnanrd 493 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → ¬ (𝑓𝑆𝑐𝑓𝑐))
73 opeq1 4764 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑎 → ⟨𝑒, 𝑓⟩ = ⟨𝑎, 𝑓⟩)
7473eleq1d 2836 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑎 → (⟨𝑒, 𝑓⟩ ∈ 𝑠 ↔ ⟨𝑎, 𝑓⟩ ∈ 𝑠))
7574anbi2d 631 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑎 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ↔ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠)))
76 3anass 1092 . . . . . . . . . . . . . . . . . . 19 (((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))
77 olc 865 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑎 → (𝑒𝑅𝑎𝑒 = 𝑎))
7877biantrurd 536 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑎 → (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))))
79 neeq1 3013 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = 𝑎 → (𝑒𝑎𝑎𝑎))
8079orbi1d 914 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 = 𝑎 → ((𝑒𝑎𝑓𝑐) ↔ (𝑎𝑎𝑓𝑐)))
81 neirr 2960 . . . . . . . . . . . . . . . . . . . . . . . 24 ¬ 𝑎𝑎
82 biorf 934 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑎𝑎 → (𝑓𝑐 ↔ (𝑎𝑎𝑓𝑐)))
8381, 82ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓𝑐 ↔ (𝑎𝑎𝑓𝑐))
8480, 83bitr4di 292 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = 𝑎 → ((𝑒𝑎𝑓𝑐) ↔ 𝑓𝑐))
8584anbi2d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑎 → (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ ((𝑓𝑆𝑐𝑓 = 𝑐) ∧ 𝑓𝑐)))
86 andir 1006 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ 𝑓𝑐) ↔ ((𝑓𝑆𝑐𝑓𝑐) ∨ (𝑓 = 𝑐𝑓𝑐)))
87 nonconne 2963 . . . . . . . . . . . . . . . . . . . . . . 23 ¬ (𝑓 = 𝑐𝑓𝑐)
8887biorfi 936 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑆𝑐𝑓𝑐) ↔ ((𝑓𝑆𝑐𝑓𝑐) ∨ (𝑓 = 𝑐𝑓𝑐)))
8986, 88bitr4i 281 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ 𝑓𝑐) ↔ (𝑓𝑆𝑐𝑓𝑐))
9085, 89bitrdi 290 . . . . . . . . . . . . . . . . . . . 20 (𝑒 = 𝑎 → (((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ (𝑓𝑆𝑐𝑓𝑐)))
9178, 90bitr3d 284 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑎 → (((𝑒𝑅𝑎𝑒 = 𝑎) ∧ ((𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))) ↔ (𝑓𝑆𝑐𝑓𝑐)))
9276, 91syl5bb 286 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑎 → (((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ (𝑓𝑆𝑐𝑓𝑐)))
9392notbid 321 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝑎 → (¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)) ↔ ¬ (𝑓𝑆𝑐𝑓𝑐)))
9475, 93imbi12d 348 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑎 → ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))) ↔ (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑎, 𝑓⟩ ∈ 𝑠) → ¬ (𝑓𝑆𝑐𝑓𝑐))))
9572, 94mpbiri 261 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))
9695impcom 411 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒 = 𝑎) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))
97 breq1 5039 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑒 → (𝑏𝑅𝑎𝑒𝑅𝑎))
9897notbid 321 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑒 → (¬ 𝑏𝑅𝑎 ↔ ¬ 𝑒𝑅𝑎))
99 simplrr 777 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)
10099ad2antrr 725 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)
101 vex 3413 . . . . . . . . . . . . . . . . . . . 20 𝑒 ∈ V
102101, 67opeldm 5753 . . . . . . . . . . . . . . . . . . 19 (⟨𝑒, 𝑓⟩ ∈ 𝑠𝑒 ∈ dom 𝑠)
103102adantl 485 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → 𝑒 ∈ dom 𝑠)
104103adantr 484 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → 𝑒 ∈ dom 𝑠)
10598, 100, 104rspcdva 3545 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ¬ 𝑒𝑅𝑎)
106 simpr 488 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → 𝑒𝑎)
107106neneqd 2956 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ¬ 𝑒 = 𝑎)
108 ioran 981 . . . . . . . . . . . . . . . 16 (¬ (𝑒𝑅𝑎𝑒 = 𝑎) ↔ (¬ 𝑒𝑅𝑎 ∧ ¬ 𝑒 = 𝑎))
109105, 107, 108sylanbrc 586 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ¬ (𝑒𝑅𝑎𝑒 = 𝑎))
110109intn3an1d 1476 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) ∧ 𝑒𝑎) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))
11196, 110pm2.61dane 3038 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))
112111intn3an3d 1478 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))
113 eleq1 2839 . . . . . . . . . . . . . 14 (𝑞 = ⟨𝑒, 𝑓⟩ → (𝑞𝑠 ↔ ⟨𝑒, 𝑓⟩ ∈ 𝑠))
114113anbi2d 631 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑒, 𝑓⟩ → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) ↔ ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠)))
115 breq1 5039 . . . . . . . . . . . . . . 15 (𝑞 = ⟨𝑒, 𝑓⟩ → (𝑞𝑇𝑎, 𝑐⟩ ↔ ⟨𝑒, 𝑓𝑇𝑎, 𝑐⟩))
116 xpord2.1 . . . . . . . . . . . . . . . 16 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
117116xpord2lem 33356 . . . . . . . . . . . . . . 15 (⟨𝑒, 𝑓𝑇𝑎, 𝑐⟩ ↔ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))
118115, 117bitrdi 290 . . . . . . . . . . . . . 14 (𝑞 = ⟨𝑒, 𝑓⟩ → (𝑞𝑇𝑎, 𝑐⟩ ↔ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))))
119118notbid 321 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑒, 𝑓⟩ → (¬ 𝑞𝑇𝑎, 𝑐⟩ ↔ ¬ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐)))))
120114, 119imbi12d 348 . . . . . . . . . . . 12 (𝑞 = ⟨𝑒, 𝑓⟩ → ((((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → ¬ 𝑞𝑇𝑎, 𝑐⟩) ↔ (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ ⟨𝑒, 𝑓⟩ ∈ 𝑠) → ¬ ((𝑒𝐴𝑓𝐵) ∧ (𝑎𝐴𝑐𝐵) ∧ ((𝑒𝑅𝑎𝑒 = 𝑎) ∧ (𝑓𝑆𝑐𝑓 = 𝑐) ∧ (𝑒𝑎𝑓𝑐))))))
121112, 120mpbiri 261 . . . . . . . . . . 11 (𝑞 = ⟨𝑒, 𝑓⟩ → (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → ¬ 𝑞𝑇𝑎, 𝑐⟩))
122121com12 32 . . . . . . . . . 10 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → (𝑞 = ⟨𝑒, 𝑓⟩ → ¬ 𝑞𝑇𝑎, 𝑐⟩))
123122exlimdvv 1935 . . . . . . . . 9 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → (∃𝑒𝑓 𝑞 = ⟨𝑒, 𝑓⟩ → ¬ 𝑞𝑇𝑎, 𝑐⟩))
12463, 123mpd 15 . . . . . . . 8 (((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) ∧ 𝑞𝑠) → ¬ 𝑞𝑇𝑎, 𝑐⟩)
125124ralrimiva 3113 . . . . . . 7 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∀𝑞𝑠 ¬ 𝑞𝑇𝑎, 𝑐⟩)
126 breq2 5040 . . . . . . . . . 10 (𝑝 = ⟨𝑎, 𝑐⟩ → (𝑞𝑇𝑝𝑞𝑇𝑎, 𝑐⟩))
127126notbid 321 . . . . . . . . 9 (𝑝 = ⟨𝑎, 𝑐⟩ → (¬ 𝑞𝑇𝑝 ↔ ¬ 𝑞𝑇𝑎, 𝑐⟩))
128127ralbidv 3126 . . . . . . . 8 (𝑝 = ⟨𝑎, 𝑐⟩ → (∀𝑞𝑠 ¬ 𝑞𝑇𝑝 ↔ ∀𝑞𝑠 ¬ 𝑞𝑇𝑎, 𝑐⟩))
129128rspcev 3543 . . . . . . 7 ((⟨𝑎, 𝑐⟩ ∈ 𝑠 ∧ ∀𝑞𝑠 ¬ 𝑞𝑇𝑎, 𝑐⟩) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝)
13060, 125, 129syl2anc 587 . . . . . 6 ((((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) ∧ (𝑐 ∈ (𝑠 “ {𝑎}) ∧ ∀𝑑 ∈ (𝑠 “ {𝑎}) ¬ 𝑑𝑆𝑐)) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝)
13155, 130rexlimddv 3215 . . . . 5 (((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) ∧ (𝑎 ∈ dom 𝑠 ∧ ∀𝑏 ∈ dom 𝑠 ¬ 𝑏𝑅𝑎)) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝)
13228, 131rexlimddv 3215 . . . 4 ((𝜑 ∧ (𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅)) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝)
133132ex 416 . . 3 (𝜑 → ((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝))
134133alrimiv 1928 . 2 (𝜑 → ∀𝑠((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝))
135 df-fr 5487 . 2 (𝑇 Fr (𝐴 × 𝐵) ↔ ∀𝑠((𝑠 ⊆ (𝐴 × 𝐵) ∧ 𝑠 ≠ ∅) → ∃𝑝𝑠𝑞𝑠 ¬ 𝑞𝑇𝑝))
136134, 135sylibr 237 1 (𝜑𝑇 Fr (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2111  wne 2951  wral 3070  wrex 3071  cin 3859  wss 3860  c0 4227  {csn 4525  cop 4531   class class class wbr 5036  {copab 5098   Fr wfr 5484   × cxp 5526  dom cdm 5528  ran crn 5529  cima 5531  Rel wrel 5533  cfv 6340  1st c1st 7697  2nd c2nd 7698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-fr 5487  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fv 6348  df-1st 7699  df-2nd 7700
This theorem is referenced by:  xpord2ind  33361  on2recsfn  33423  on2recsov  33424  noxpordfr  33690
  Copyright terms: Public domain W3C validator