Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jca2r Structured version   Visualization version   GIF version

Theorem jca2r 36796
Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 17-Oct-2010.)
Hypotheses
Ref Expression
jca2r.1 (𝜑 → (𝜓𝜒))
jca2r.2 (𝜓𝜃)
Assertion
Ref Expression
jca2r (𝜑 → (𝜓 → (𝜃𝜒)))

Proof of Theorem jca2r
StepHypRef Expression
1 jca2r.2 . . 3 (𝜓𝜃)
21a1i 11 . 2 (𝜑 → (𝜓𝜃))
3 jca2r.1 . 2 (𝜑 → (𝜓𝜒))
42, 3jcad 512 1 (𝜑 → (𝜓 → (𝜃𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  prter2  36822
  Copyright terms: Public domain W3C validator