| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > jca3 | Structured version Visualization version GIF version | ||
| Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 14-Oct-2010.) |
| Ref | Expression |
|---|---|
| jca3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jca3.2 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| jca3 | ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 ∧ 𝜏)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca3.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | 2 | a1d 25 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜃 → 𝜒)) |
| 4 | jca3.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
| 5 | 3, 4 | jca2 513 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜃 → (𝜒 ∧ 𝜏))) |
| 6 | 5 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 ∧ 𝜏)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |