Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > jca3 | Structured version Visualization version GIF version |
Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 14-Oct-2010.) |
Ref | Expression |
---|---|
jca3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jca3.2 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
jca3 | ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 ∧ 𝜏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca3.1 | . . . . 5 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | imp 410 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3 | 2 | a1d 25 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜃 → 𝜒)) |
4 | jca3.2 | . . 3 ⊢ (𝜃 → 𝜏) | |
5 | 3, 4 | jca2 517 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜃 → (𝜒 ∧ 𝜏))) |
6 | 5 | ex 416 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜒 ∧ 𝜏)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |