Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jcad | Structured version Visualization version GIF version |
Description: Deduction conjoining the consequents of two implications. Deduction form of jca 511 and double deduction form of pm3.2 469 and pm3.2i 470. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jcad.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
3 | pm3.2 469 | . 2 ⊢ (𝜒 → (𝜃 → (𝜒 ∧ 𝜃))) | |
4 | 1, 2, 3 | syl6c 70 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: jca2 513 jctild 525 jctird 526 ancld 550 ancrd 551 oplem1 1053 2eu1 2653 2eu1v 2654 disjxiun 5075 iss 5940 oneqmini 6314 funssres 6474 elpreima 6929 isomin 7201 oneqmin 7640 frxp 7951 tposfo2 8049 oa00 8366 odi 8386 oneo 8388 oeordsuc 8401 oelim2 8402 nnarcl 8423 nnmord 8439 nnneo 8459 map0g 8646 pssnn 8916 onomeneq 8975 pssnnOLD 9001 fodomfib 9054 inf3lem4 9350 cplem1 9631 karden 9637 alephordi 9814 cardinfima 9837 dfac5lem5 9867 isf34lem4 10117 axcc4 10179 axdc3lem2 10191 zorn2lem4 10239 zorn2lem7 10242 indpi 10647 genpcl 10748 addclprlem2 10757 ltaddpr 10774 ltexprlem5 10780 suplem1pr 10792 ltlen 11059 dedekind 11121 mulgt1 11817 sup2 11914 nominpos 12193 uzind 12395 xrmaxlt 12897 xrltmin 12898 xrmaxle 12899 xrlemin 12900 xmullem2 12981 ccatopth 14410 shftuz 14761 sqreulem 15052 limsupbnd2 15173 mulcn2 15286 sadcaddlem 16145 dvdsgcdb 16234 algcvgblem 16263 lcmdvdsb 16299 rpexp 16408 infpnlem1 16592 divsfval 17239 iscatd 17363 posasymb 18018 plttr 18041 joinle 18085 meetle 18099 latnlej 18155 latnlej2 18158 lsmlub 19251 imasring 19839 unitmulclb 19888 lbspss 20325 lspsneu 20366 lspprat 20396 assapropd 21057 isclo2 22220 cncls2 22405 cncls 22406 cnntr 22407 cnrest2 22418 cmpsub 22532 cmpcld 22534 kgenss 22675 ptpjpre1 22703 txlm 22780 qtoptop2 22831 cmphaushmeo 22932 fbun 22972 isfild 22990 fbasrn 23016 fgtr 23022 ufinffr 23061 rnelfm 23085 fmfnfmlem4 23089 ghmcnp 23247 metrest 23661 icoopnst 24083 iocopnst 24084 dgreq0 25407 plyexmo 25454 cxpeq0 25814 mumullem2 26310 chpchtsum 26348 bposlem7 26419 lgsqr 26480 uspgr2wlkeq 27993 wwlknllvtx 28190 ex-natded5.3-2 28751 ubthlem1 29211 axhcompl-zf 29339 ococss 29634 nmopun 30355 elpjrn 30531 stm1addi 30586 stm1add3i 30588 mdsl1i 30662 chrelat2i 30706 atexch 30722 atcvat4i 30738 mdsymlem3 30746 bian1d 30788 bnj600 32878 subgrwlk 33073 pthacycspth 33098 subfacval2 33128 climuzcnv 33608 fundmpss 33719 soseq 33782 sltres 33844 nosupno 33885 noinfno 33900 segconeq 34291 ifscgr 34325 endofsegid 34366 colinbtwnle 34399 trer 34484 ivthALT 34503 fnessref 34525 fnemeet2 34535 fnejoin2 34537 onsuct0 34609 bj-ideqg1 35314 bj-elid6 35320 bj-finsumval0 35435 bj-isrvec2 35450 bj-bary1 35462 icorempo 35501 isbasisrelowllem1 35505 isbasisrelowllem2 35506 relowlpssretop 35514 finxpsuclem 35547 pibt2 35567 poimirlem31 35787 isbnd2 35920 bfplem2 35960 ghomco 36028 cnf1dd 36227 contrd 36234 mpobi123f 36299 mptbi12f 36303 iss2 36458 jca2r 36848 prter2 36874 lshpset2N 37112 cvrnbtwn2 37268 cvrnbtwn3 37269 cvrnbtwn4 37272 cvlcvr1 37332 hlrelat2 37396 cvrat4 37436 islpln2a 37541 linepsubN 37745 elpaddn0 37793 paddssw2 37837 pmapjoin 37845 ispsubcl2N 37940 dochkrshp 39379 dochsatshp 39444 mapdh9a 39782 hdmap11lem2 39835 frlmfzowrdb 40215 sn-sup2 40419 pwinfi3 41123 clsk1independent 41609 gneispace 41697 pm11.71 41968 2reu8i 44556 sbgoldbaltlem2 45184 setrec1lem4 46348 |
Copyright terms: Public domain | W3C validator |