Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jcad | Structured version Visualization version GIF version |
Description: Deduction conjoining the consequents of two implications. Deduction form of jca 511 and double deduction form of pm3.2 469 and pm3.2i 470. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jcad.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
3 | pm3.2 469 | . 2 ⊢ (𝜒 → (𝜃 → (𝜒 ∧ 𝜃))) | |
4 | 1, 2, 3 | syl6c 70 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: jca2 513 jctild 525 jctird 526 ancld 550 ancrd 551 oplem1 1053 2eu1 2652 2eu1v 2653 disjxiun 5067 iss 5932 oneqmini 6302 funssres 6462 elpreima 6917 isomin 7188 oneqmin 7627 frxp 7938 tposfo2 8036 oa00 8352 odi 8372 oneo 8374 oeordsuc 8387 oelim2 8388 nnarcl 8409 nnmord 8425 nnneo 8445 map0g 8630 pssnn 8913 onomeneq 8943 pssnnOLD 8969 fodomfib 9023 inf3lem4 9319 cplem1 9578 karden 9584 alephordi 9761 cardinfima 9784 dfac5lem5 9814 isf34lem4 10064 axcc4 10126 axdc3lem2 10138 zorn2lem4 10186 zorn2lem7 10189 indpi 10594 genpcl 10695 addclprlem2 10704 ltaddpr 10721 ltexprlem5 10727 suplem1pr 10739 ltlen 11006 dedekind 11068 mulgt1 11764 sup2 11861 nominpos 12140 uzind 12342 xrmaxlt 12844 xrltmin 12845 xrmaxle 12846 xrlemin 12847 xmullem2 12928 ccatopth 14357 shftuz 14708 sqreulem 14999 limsupbnd2 15120 mulcn2 15233 sadcaddlem 16092 dvdsgcdb 16181 algcvgblem 16210 lcmdvdsb 16246 rpexp 16355 infpnlem1 16539 divsfval 17175 iscatd 17299 posasymb 17952 plttr 17975 joinle 18019 meetle 18033 latnlej 18089 latnlej2 18092 lsmlub 19185 imasring 19773 unitmulclb 19822 lbspss 20259 lspsneu 20300 lspprat 20330 assapropd 20986 isclo2 22147 cncls2 22332 cncls 22333 cnntr 22334 cnrest2 22345 cmpsub 22459 cmpcld 22461 kgenss 22602 ptpjpre1 22630 txlm 22707 qtoptop2 22758 cmphaushmeo 22859 fbun 22899 isfild 22917 fbasrn 22943 fgtr 22949 ufinffr 22988 rnelfm 23012 fmfnfmlem4 23016 ghmcnp 23174 metrest 23586 icoopnst 24008 iocopnst 24009 dgreq0 25331 plyexmo 25378 cxpeq0 25738 mumullem2 26234 chpchtsum 26272 bposlem7 26343 lgsqr 26404 uspgr2wlkeq 27915 wwlknllvtx 28112 ex-natded5.3-2 28673 ubthlem1 29133 axhcompl-zf 29261 ococss 29556 nmopun 30277 elpjrn 30453 stm1addi 30508 stm1add3i 30510 mdsl1i 30584 chrelat2i 30628 atexch 30644 atcvat4i 30660 mdsymlem3 30668 bian1d 30710 bnj600 32799 subgrwlk 32994 pthacycspth 33019 subfacval2 33049 climuzcnv 33529 fundmpss 33646 soseq 33730 sltres 33792 nosupno 33833 noinfno 33848 segconeq 34239 ifscgr 34273 endofsegid 34314 colinbtwnle 34347 trer 34432 ivthALT 34451 fnessref 34473 fnemeet2 34483 fnejoin2 34485 onsuct0 34557 bj-ideqg1 35262 bj-elid6 35268 bj-finsumval0 35383 bj-isrvec2 35398 bj-bary1 35410 icorempo 35449 isbasisrelowllem1 35453 isbasisrelowllem2 35454 relowlpssretop 35462 finxpsuclem 35495 pibt2 35515 poimirlem31 35735 isbnd2 35868 bfplem2 35908 ghomco 35976 cnf1dd 36175 contrd 36182 mpobi123f 36247 mptbi12f 36251 iss2 36406 jca2r 36796 prter2 36822 lshpset2N 37060 cvrnbtwn2 37216 cvrnbtwn3 37217 cvrnbtwn4 37220 cvlcvr1 37280 hlrelat2 37344 cvrat4 37384 islpln2a 37489 linepsubN 37693 elpaddn0 37741 paddssw2 37785 pmapjoin 37793 ispsubcl2N 37888 dochkrshp 39327 dochsatshp 39392 mapdh9a 39730 hdmap11lem2 39783 frlmfzowrdb 40161 sn-sup2 40360 pwinfi3 41059 clsk1independent 41545 gneispace 41633 pm11.71 41904 2reu8i 44492 sbgoldbaltlem2 45120 setrec1lem4 46282 |
Copyright terms: Public domain | W3C validator |