Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prter2 Structured version   Visualization version   GIF version

Theorem prter2 36895
Description: The quotient set of the equivalence relation generated by a partition equals the partition itself. (Contributed by Rodolfo Medina, 17-Oct-2010.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prter2 (Prt 𝐴 → ( 𝐴 / ) = (𝐴 ∖ {∅}))
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prter2
Dummy variables 𝑝 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3233 . . . . . . . . . . 11 (∃𝑣𝐴𝑧(𝑧𝑣𝑝 = [𝑧] ) ↔ ∃𝑧𝑣𝐴 (𝑧𝑣𝑝 = [𝑧] ))
2 r19.41v 3276 . . . . . . . . . . . 12 (∃𝑣𝐴 (𝑧𝑣𝑝 = [𝑧] ) ↔ (∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
32exbii 1850 . . . . . . . . . . 11 (∃𝑧𝑣𝐴 (𝑧𝑣𝑝 = [𝑧] ) ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
41, 3bitri 274 . . . . . . . . . 10 (∃𝑣𝐴𝑧(𝑧𝑣𝑝 = [𝑧] ) ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
5 df-rex 3070 . . . . . . . . . . 11 (∃𝑧𝑣 𝑝 = [𝑧] ↔ ∃𝑧(𝑧𝑣𝑝 = [𝑧] ))
65rexbii 3181 . . . . . . . . . 10 (∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] ↔ ∃𝑣𝐴𝑧(𝑧𝑣𝑝 = [𝑧] ))
7 vex 3436 . . . . . . . . . . . 12 𝑝 ∈ V
87elqs 8558 . . . . . . . . . . 11 (𝑝 ∈ ( 𝐴 / ) ↔ ∃𝑧 𝐴𝑝 = [𝑧] )
9 df-rex 3070 . . . . . . . . . . . 12 (∃𝑧 𝐴𝑝 = [𝑧] ↔ ∃𝑧(𝑧 𝐴𝑝 = [𝑧] ))
10 eluni2 4843 . . . . . . . . . . . . . 14 (𝑧 𝐴 ↔ ∃𝑣𝐴 𝑧𝑣)
1110anbi1i 624 . . . . . . . . . . . . 13 ((𝑧 𝐴𝑝 = [𝑧] ) ↔ (∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
1211exbii 1850 . . . . . . . . . . . 12 (∃𝑧(𝑧 𝐴𝑝 = [𝑧] ) ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
139, 12bitri 274 . . . . . . . . . . 11 (∃𝑧 𝐴𝑝 = [𝑧] ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
148, 13bitri 274 . . . . . . . . . 10 (𝑝 ∈ ( 𝐴 / ) ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
154, 6, 143bitr4ri 304 . . . . . . . . 9 (𝑝 ∈ ( 𝐴 / ) ↔ ∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] )
16 prtlem18.1 . . . . . . . . . . . 12 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
1716prtlem19 36892 . . . . . . . . . . 11 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → 𝑣 = [𝑧] ))
1817ralrimivv 3122 . . . . . . . . . 10 (Prt 𝐴 → ∀𝑣𝐴𝑧𝑣 𝑣 = [𝑧] )
19 2r19.29 3263 . . . . . . . . . . 11 ((∀𝑣𝐴𝑧𝑣 𝑣 = [𝑧] ∧ ∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] ) → ∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] ))
2019ex 413 . . . . . . . . . 10 (∀𝑣𝐴𝑧𝑣 𝑣 = [𝑧] → (∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] → ∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] )))
2118, 20syl 17 . . . . . . . . 9 (Prt 𝐴 → (∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] → ∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] )))
2215, 21syl5bi 241 . . . . . . . 8 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → ∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] )))
23 eqtr3 2764 . . . . . . . . . 10 ((𝑣 = [𝑧] 𝑝 = [𝑧] ) → 𝑣 = 𝑝)
2423reximi 3178 . . . . . . . . 9 (∃𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] ) → ∃𝑧𝑣 𝑣 = 𝑝)
2524reximi 3178 . . . . . . . 8 (∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] ) → ∃𝑣𝐴𝑧𝑣 𝑣 = 𝑝)
2622, 25syl6 35 . . . . . . 7 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → ∃𝑣𝐴𝑧𝑣 𝑣 = 𝑝))
27 df-rex 3070 . . . . . . . . . 10 (∃𝑧𝑣 𝑣 = 𝑝 ↔ ∃𝑧(𝑧𝑣𝑣 = 𝑝))
28 19.41v 1953 . . . . . . . . . 10 (∃𝑧(𝑧𝑣𝑣 = 𝑝) ↔ (∃𝑧 𝑧𝑣𝑣 = 𝑝))
2927, 28bitri 274 . . . . . . . . 9 (∃𝑧𝑣 𝑣 = 𝑝 ↔ (∃𝑧 𝑧𝑣𝑣 = 𝑝))
3029simprbi 497 . . . . . . . 8 (∃𝑧𝑣 𝑣 = 𝑝𝑣 = 𝑝)
3130reximi 3178 . . . . . . 7 (∃𝑣𝐴𝑧𝑣 𝑣 = 𝑝 → ∃𝑣𝐴 𝑣 = 𝑝)
3226, 31syl6 35 . . . . . 6 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → ∃𝑣𝐴 𝑣 = 𝑝))
33 risset 3194 . . . . . 6 (𝑝𝐴 ↔ ∃𝑣𝐴 𝑣 = 𝑝)
3432, 33syl6ibr 251 . . . . 5 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → 𝑝𝐴))
3516prtlem400 36884 . . . . . 6 ¬ ∅ ∈ ( 𝐴 / )
36 nelelne 3043 . . . . . 6 (¬ ∅ ∈ ( 𝐴 / ) → (𝑝 ∈ ( 𝐴 / ) → 𝑝 ≠ ∅))
3735, 36mp1i 13 . . . . 5 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → 𝑝 ≠ ∅))
3834, 37jcad 513 . . . 4 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → (𝑝𝐴𝑝 ≠ ∅)))
39 eldifsn 4720 . . . 4 (𝑝 ∈ (𝐴 ∖ {∅}) ↔ (𝑝𝐴𝑝 ≠ ∅))
4038, 39syl6ibr 251 . . 3 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → 𝑝 ∈ (𝐴 ∖ {∅})))
41 neldifsn 4725 . . . . . . 7 ¬ ∅ ∈ (𝐴 ∖ {∅})
42 n0el 4295 . . . . . . 7 (¬ ∅ ∈ (𝐴 ∖ {∅}) ↔ ∀𝑝 ∈ (𝐴 ∖ {∅})∃𝑧 𝑧𝑝)
4341, 42mpbi 229 . . . . . 6 𝑝 ∈ (𝐴 ∖ {∅})∃𝑧 𝑧𝑝
4443rspec 3133 . . . . 5 (𝑝 ∈ (𝐴 ∖ {∅}) → ∃𝑧 𝑧𝑝)
45 eldifi 4061 . . . . 5 (𝑝 ∈ (𝐴 ∖ {∅}) → 𝑝𝐴)
4644, 45jca 512 . . . 4 (𝑝 ∈ (𝐴 ∖ {∅}) → (∃𝑧 𝑧𝑝𝑝𝐴))
4716prtlem19 36892 . . . . . . . . 9 (Prt 𝐴 → ((𝑝𝐴𝑧𝑝) → 𝑝 = [𝑧] ))
4847ancomsd 466 . . . . . . . 8 (Prt 𝐴 → ((𝑧𝑝𝑝𝐴) → 𝑝 = [𝑧] ))
49 elunii 4844 . . . . . . . 8 ((𝑧𝑝𝑝𝐴) → 𝑧 𝐴)
5048, 49jca2r 36869 . . . . . . 7 (Prt 𝐴 → ((𝑧𝑝𝑝𝐴) → (𝑧 𝐴𝑝 = [𝑧] )))
51 prtlem11 36880 . . . . . . . . 9 (𝑝 ∈ V → (𝑧 𝐴 → (𝑝 = [𝑧] 𝑝 ∈ ( 𝐴 / ))))
5251elv 3438 . . . . . . . 8 (𝑧 𝐴 → (𝑝 = [𝑧] 𝑝 ∈ ( 𝐴 / )))
5352imp 407 . . . . . . 7 ((𝑧 𝐴𝑝 = [𝑧] ) → 𝑝 ∈ ( 𝐴 / ))
5450, 53syl6 35 . . . . . 6 (Prt 𝐴 → ((𝑧𝑝𝑝𝐴) → 𝑝 ∈ ( 𝐴 / )))
5554eximdv 1920 . . . . 5 (Prt 𝐴 → (∃𝑧(𝑧𝑝𝑝𝐴) → ∃𝑧 𝑝 ∈ ( 𝐴 / )))
56 19.41v 1953 . . . . 5 (∃𝑧(𝑧𝑝𝑝𝐴) ↔ (∃𝑧 𝑧𝑝𝑝𝐴))
57 19.9v 1987 . . . . 5 (∃𝑧 𝑝 ∈ ( 𝐴 / ) ↔ 𝑝 ∈ ( 𝐴 / ))
5855, 56, 573imtr3g 295 . . . 4 (Prt 𝐴 → ((∃𝑧 𝑧𝑝𝑝𝐴) → 𝑝 ∈ ( 𝐴 / )))
5946, 58syl5 34 . . 3 (Prt 𝐴 → (𝑝 ∈ (𝐴 ∖ {∅}) → 𝑝 ∈ ( 𝐴 / )))
6040, 59impbid 211 . 2 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) ↔ 𝑝 ∈ (𝐴 ∖ {∅})))
6160eqrdv 2736 1 (Prt 𝐴 → ( 𝐴 / ) = (𝐴 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  c0 4256  {csn 4561   cuni 4839  {copab 5136  [cec 8496   / cqs 8497  Prt wprt 36885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-qs 8504  df-prt 36886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator