Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prter2 Structured version   Visualization version   GIF version

Theorem prter2 38899
Description: The quotient set of the equivalence relation generated by a partition equals the partition itself. (Contributed by Rodolfo Medina, 17-Oct-2010.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prter2 (Prt 𝐴 → ( 𝐴 / ) = (𝐴 ∖ {∅}))
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prter2
Dummy variables 𝑝 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3269 . . . . . . . . . . 11 (∃𝑣𝐴𝑧(𝑧𝑣𝑝 = [𝑧] ) ↔ ∃𝑧𝑣𝐴 (𝑧𝑣𝑝 = [𝑧] ))
2 r19.41v 3174 . . . . . . . . . . . 12 (∃𝑣𝐴 (𝑧𝑣𝑝 = [𝑧] ) ↔ (∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
32exbii 1848 . . . . . . . . . . 11 (∃𝑧𝑣𝐴 (𝑧𝑣𝑝 = [𝑧] ) ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
41, 3bitri 275 . . . . . . . . . 10 (∃𝑣𝐴𝑧(𝑧𝑣𝑝 = [𝑧] ) ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
5 df-rex 3061 . . . . . . . . . . 11 (∃𝑧𝑣 𝑝 = [𝑧] ↔ ∃𝑧(𝑧𝑣𝑝 = [𝑧] ))
65rexbii 3083 . . . . . . . . . 10 (∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] ↔ ∃𝑣𝐴𝑧(𝑧𝑣𝑝 = [𝑧] ))
7 vex 3463 . . . . . . . . . . . 12 𝑝 ∈ V
87elqs 8783 . . . . . . . . . . 11 (𝑝 ∈ ( 𝐴 / ) ↔ ∃𝑧 𝐴𝑝 = [𝑧] )
9 df-rex 3061 . . . . . . . . . . . 12 (∃𝑧 𝐴𝑝 = [𝑧] ↔ ∃𝑧(𝑧 𝐴𝑝 = [𝑧] ))
10 eluni2 4887 . . . . . . . . . . . . . 14 (𝑧 𝐴 ↔ ∃𝑣𝐴 𝑧𝑣)
1110anbi1i 624 . . . . . . . . . . . . 13 ((𝑧 𝐴𝑝 = [𝑧] ) ↔ (∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
1211exbii 1848 . . . . . . . . . . . 12 (∃𝑧(𝑧 𝐴𝑝 = [𝑧] ) ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
139, 12bitri 275 . . . . . . . . . . 11 (∃𝑧 𝐴𝑝 = [𝑧] ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
148, 13bitri 275 . . . . . . . . . 10 (𝑝 ∈ ( 𝐴 / ) ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
154, 6, 143bitr4ri 304 . . . . . . . . 9 (𝑝 ∈ ( 𝐴 / ) ↔ ∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] )
16 prtlem18.1 . . . . . . . . . . . 12 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
1716prtlem19 38896 . . . . . . . . . . 11 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → 𝑣 = [𝑧] ))
1817ralrimivv 3185 . . . . . . . . . 10 (Prt 𝐴 → ∀𝑣𝐴𝑧𝑣 𝑣 = [𝑧] )
19 2r19.29 3126 . . . . . . . . . . 11 ((∀𝑣𝐴𝑧𝑣 𝑣 = [𝑧] ∧ ∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] ) → ∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] ))
2019ex 412 . . . . . . . . . 10 (∀𝑣𝐴𝑧𝑣 𝑣 = [𝑧] → (∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] → ∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] )))
2118, 20syl 17 . . . . . . . . 9 (Prt 𝐴 → (∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] → ∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] )))
2215, 21biimtrid 242 . . . . . . . 8 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → ∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] )))
23 eqtr3 2757 . . . . . . . . . 10 ((𝑣 = [𝑧] 𝑝 = [𝑧] ) → 𝑣 = 𝑝)
2423reximi 3074 . . . . . . . . 9 (∃𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] ) → ∃𝑧𝑣 𝑣 = 𝑝)
2524reximi 3074 . . . . . . . 8 (∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] ) → ∃𝑣𝐴𝑧𝑣 𝑣 = 𝑝)
2622, 25syl6 35 . . . . . . 7 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → ∃𝑣𝐴𝑧𝑣 𝑣 = 𝑝))
27 df-rex 3061 . . . . . . . . . 10 (∃𝑧𝑣 𝑣 = 𝑝 ↔ ∃𝑧(𝑧𝑣𝑣 = 𝑝))
28 19.41v 1949 . . . . . . . . . 10 (∃𝑧(𝑧𝑣𝑣 = 𝑝) ↔ (∃𝑧 𝑧𝑣𝑣 = 𝑝))
2927, 28bitri 275 . . . . . . . . 9 (∃𝑧𝑣 𝑣 = 𝑝 ↔ (∃𝑧 𝑧𝑣𝑣 = 𝑝))
3029simprbi 496 . . . . . . . 8 (∃𝑧𝑣 𝑣 = 𝑝𝑣 = 𝑝)
3130reximi 3074 . . . . . . 7 (∃𝑣𝐴𝑧𝑣 𝑣 = 𝑝 → ∃𝑣𝐴 𝑣 = 𝑝)
3226, 31syl6 35 . . . . . 6 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → ∃𝑣𝐴 𝑣 = 𝑝))
33 risset 3217 . . . . . 6 (𝑝𝐴 ↔ ∃𝑣𝐴 𝑣 = 𝑝)
3432, 33imbitrrdi 252 . . . . 5 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → 𝑝𝐴))
3516prtlem400 38888 . . . . . 6 ¬ ∅ ∈ ( 𝐴 / )
36 nelelne 3031 . . . . . 6 (¬ ∅ ∈ ( 𝐴 / ) → (𝑝 ∈ ( 𝐴 / ) → 𝑝 ≠ ∅))
3735, 36mp1i 13 . . . . 5 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → 𝑝 ≠ ∅))
3834, 37jcad 512 . . . 4 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → (𝑝𝐴𝑝 ≠ ∅)))
39 eldifsn 4762 . . . 4 (𝑝 ∈ (𝐴 ∖ {∅}) ↔ (𝑝𝐴𝑝 ≠ ∅))
4038, 39imbitrrdi 252 . . 3 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → 𝑝 ∈ (𝐴 ∖ {∅})))
41 neldifsn 4768 . . . . . . 7 ¬ ∅ ∈ (𝐴 ∖ {∅})
42 n0el 4339 . . . . . . 7 (¬ ∅ ∈ (𝐴 ∖ {∅}) ↔ ∀𝑝 ∈ (𝐴 ∖ {∅})∃𝑧 𝑧𝑝)
4341, 42mpbi 230 . . . . . 6 𝑝 ∈ (𝐴 ∖ {∅})∃𝑧 𝑧𝑝
4443rspec 3233 . . . . 5 (𝑝 ∈ (𝐴 ∖ {∅}) → ∃𝑧 𝑧𝑝)
45 eldifi 4106 . . . . 5 (𝑝 ∈ (𝐴 ∖ {∅}) → 𝑝𝐴)
4644, 45jca 511 . . . 4 (𝑝 ∈ (𝐴 ∖ {∅}) → (∃𝑧 𝑧𝑝𝑝𝐴))
4716prtlem19 38896 . . . . . . . . 9 (Prt 𝐴 → ((𝑝𝐴𝑧𝑝) → 𝑝 = [𝑧] ))
4847ancomsd 465 . . . . . . . 8 (Prt 𝐴 → ((𝑧𝑝𝑝𝐴) → 𝑝 = [𝑧] ))
49 elunii 4888 . . . . . . . 8 ((𝑧𝑝𝑝𝐴) → 𝑧 𝐴)
5048, 49jca2r 38873 . . . . . . 7 (Prt 𝐴 → ((𝑧𝑝𝑝𝐴) → (𝑧 𝐴𝑝 = [𝑧] )))
51 prtlem11 38884 . . . . . . . . 9 (𝑝 ∈ V → (𝑧 𝐴 → (𝑝 = [𝑧] 𝑝 ∈ ( 𝐴 / ))))
5251elv 3464 . . . . . . . 8 (𝑧 𝐴 → (𝑝 = [𝑧] 𝑝 ∈ ( 𝐴 / )))
5352imp 406 . . . . . . 7 ((𝑧 𝐴𝑝 = [𝑧] ) → 𝑝 ∈ ( 𝐴 / ))
5450, 53syl6 35 . . . . . 6 (Prt 𝐴 → ((𝑧𝑝𝑝𝐴) → 𝑝 ∈ ( 𝐴 / )))
5554eximdv 1917 . . . . 5 (Prt 𝐴 → (∃𝑧(𝑧𝑝𝑝𝐴) → ∃𝑧 𝑝 ∈ ( 𝐴 / )))
56 19.41v 1949 . . . . 5 (∃𝑧(𝑧𝑝𝑝𝐴) ↔ (∃𝑧 𝑧𝑝𝑝𝐴))
57 19.9v 1983 . . . . 5 (∃𝑧 𝑝 ∈ ( 𝐴 / ) ↔ 𝑝 ∈ ( 𝐴 / ))
5855, 56, 573imtr3g 295 . . . 4 (Prt 𝐴 → ((∃𝑧 𝑧𝑝𝑝𝐴) → 𝑝 ∈ ( 𝐴 / )))
5946, 58syl5 34 . . 3 (Prt 𝐴 → (𝑝 ∈ (𝐴 ∖ {∅}) → 𝑝 ∈ ( 𝐴 / )))
6040, 59impbid 212 . 2 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) ↔ 𝑝 ∈ (𝐴 ∖ {∅})))
6160eqrdv 2733 1 (Prt 𝐴 → ( 𝐴 / ) = (𝐴 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  cdif 3923  c0 4308  {csn 4601   cuni 4883  {copab 5181  [cec 8717   / cqs 8718  Prt wprt 38889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ec 8721  df-qs 8725  df-prt 38890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator