MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcndOLD Structured version   Visualization version   GIF version

Theorem jcndOLD 337
Description: Obsolete version of jcnd 163 as of 10-Apr-2024. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
jcndOLD.1 (𝜑𝜓)
jcndOLD.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
jcndOLD (𝜑 → ¬ (𝜓𝜒))

Proof of Theorem jcndOLD
StepHypRef Expression
1 jcndOLD.1 . . 3 (𝜑𝜓)
2 jcndOLD.2 . . 3 (𝜑 → ¬ 𝜒)
31, 2jc 161 . 2 (𝜑 → ¬ (𝜓 → ¬ ¬ 𝜒))
4 notnotb 315 . . 3 (𝜒 ↔ ¬ ¬ 𝜒)
54imbi2i 336 . 2 ((𝜓𝜒) ↔ (𝜓 → ¬ ¬ 𝜒))
63, 5sylnibr 329 1 (𝜑 → ¬ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator