Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi2i | Structured version Visualization version GIF version |
Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitrdi 287 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
4 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
5 | 4, 2 | bitr4di 289 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
6 | 3, 5 | impbii 208 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bibi1i 339 bibi12i 340 bibi2d 343 con2bi 354 pm4.71r 559 xorass 1511 sblbis 2306 sbrbif 2308 abeq2w 2815 abeq2 2872 abeq2f 2940 pm13.183 3597 dfss2 3907 eq0 4277 eq0rdv 4338 disj 4381 disj3 4387 rzal 4439 axrep5 5215 axrep6 5216 axsepgfromrep 5221 ax6vsep 5227 inex1 5241 axprALT 5345 zfpair2 5353 sucel 6339 suppvalbr 7981 bnj89 32700 fineqvrep 33064 axrepprim 33643 brtxpsd3 34198 bisym1 34608 bj-bixor 34773 eliminable-veqab 35050 bj-snsetex 35153 bj-reabeq 35217 wl-3xorbi 35644 sn-axrep5v 40185 ifpidg 41098 nanorxor 41923 mo0sn 46161 |
Copyright terms: Public domain | W3C validator |