Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi2i | Structured version Visualization version GIF version |
Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitrdi 286 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
4 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
5 | 4, 2 | bitr4di 288 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
6 | 3, 5 | impbii 208 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bibi1i 338 bibi12i 339 bibi2d 342 con2bi 353 pm4.71r 558 xorass 1508 sblbis 2309 sbrbif 2311 abeq2w 2816 abeq2 2871 abeq2f 2939 pm13.183 3590 dfss2 3903 eq0 4274 eq0rdv 4335 disj 4378 disj3 4384 rzal 4436 axrep5 5211 axrep6 5212 axsepgfromrep 5216 ax6vsep 5222 inex1 5236 axprALT 5340 zfpair2 5348 sucel 6324 suppvalbr 7952 bnj89 32600 fineqvrep 32964 axrepprim 33543 brtxpsd3 34125 bisym1 34535 bj-bixor 34700 eliminable-veqab 34977 bj-snsetex 35080 bj-reabeq 35144 wl-3xorbi 35571 sn-axrep5v 40113 ifpidg 40996 nanorxor 41812 mo0sn 46049 |
Copyright terms: Public domain | W3C validator |