| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
| 2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
| 4 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
| 5 | 4, 2 | bitr4di 289 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi1i 338 bibi12i 339 bibi2d 342 con2bi 353 pm4.71r 558 xorass 1516 sblbis 2312 sbrbif 2314 eqabbw 2806 eqabf 2925 ab0w 4328 disj3 4403 axrep4v 5224 axrep4 5225 axrep5 5227 axrep6 5228 axrep6OLD 5229 axsepgfromrep 5234 ax6vsep 5243 inex1 5257 axprALT 5362 zfpair2 5373 sucel 6387 tz6.12-2 6815 suppvalbr 8100 bnj89 34754 fineqvrep 35158 axrepprim 35767 brtxpsd3 35959 bisym1 36484 bj-bixor 36656 eliminable-veqab 36931 bj-snsetex 37028 bj-reabeq 37092 bj-clex 37096 wl-3xorbi 37538 sn-axrep5v 42335 ifpidg 43609 nanorxor 44423 mo0sn 48941 |
| Copyright terms: Public domain | W3C validator |