| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
| 2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
| 4 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
| 5 | 4, 2 | bitr4di 289 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi1i 338 bibi12i 339 bibi2d 342 con2bi 353 pm4.71r 558 xorass 1515 sblbis 2308 sbrbif 2310 eqabbw 2802 eqabbOLD 2868 eqabf 2921 eq0 4313 eq0rdv 4370 disj 4413 disj3 4417 rzal 4472 axrep4v 5239 axrep4 5240 axrep5 5242 axrep6 5243 axrep6OLD 5244 axsepgfromrep 5249 ax6vsep 5258 inex1 5272 axprALT 5377 zfpair2 5388 sucel 6408 suppvalbr 8143 bnj89 34711 fineqvrep 35085 axrepprim 35689 brtxpsd3 35884 bisym1 36407 bj-bixor 36579 eliminable-veqab 36854 bj-snsetex 36951 bj-reabeq 37015 bj-clex 37019 wl-3xorbi 37461 sn-axrep5v 42204 ifpidg 43480 nanorxor 44294 mo0sn 48804 |
| Copyright terms: Public domain | W3C validator |