![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi2i | Structured version Visualization version GIF version |
Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitrdi 287 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
4 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
5 | 4, 2 | bitr4di 289 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bibi1i 338 bibi12i 339 bibi2d 342 con2bi 353 pm4.71r 558 xorass 1512 sblbis 2313 sbrbif 2315 eqabbw 2818 eqabbOLD 2885 eqabf 2941 eq0 4373 eq0rdv 4430 disj 4473 disj3 4477 rzal 4532 axrep5 5309 axrep6 5310 axsepgfromrep 5315 ax6vsep 5321 inex1 5335 axprALT 5440 zfpair2 5448 sucel 6469 suppvalbr 8205 bnj89 34697 fineqvrep 35071 axrepprim 35664 brtxpsd3 35860 bisym1 36385 bj-bixor 36557 eliminable-veqab 36832 bj-snsetex 36929 bj-reabeq 36993 bj-clex 36997 wl-3xorbi 37439 sn-axrep5v 42209 ifpidg 43453 nanorxor 44274 mo0sn 48547 |
Copyright terms: Public domain | W3C validator |