![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi2i | Structured version Visualization version GIF version |
Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitrdi 286 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
4 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
5 | 4, 2 | bitr4di 288 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
6 | 3, 5 | impbii 208 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bibi1i 338 bibi12i 339 bibi2d 342 con2bi 353 pm4.71r 559 xorass 1514 sblbis 2305 sbrbif 2307 eqabbw 2809 eqabbOLD 2874 eqabf 2935 pm13.183 3656 dfss2 3968 eq0 4343 eq0rdv 4404 disj 4447 disj3 4453 rzal 4508 axrep5 5291 axrep6 5292 axsepgfromrep 5297 ax6vsep 5303 inex1 5317 axprALT 5420 zfpair2 5428 sucel 6438 suppvalbr 8149 bnj89 33727 fineqvrep 34090 axrepprim 34666 brtxpsd3 34863 bisym1 35299 bj-bixor 35464 eliminable-veqab 35740 bj-snsetex 35839 bj-reabeq 35903 bj-clex 35907 wl-3xorbi 36349 sn-axrep5v 41035 ifpidg 42232 nanorxor 43054 mo0sn 47490 |
Copyright terms: Public domain | W3C validator |