| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
| 2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
| 4 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
| 5 | 4, 2 | bitr4di 289 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi1i 338 bibi12i 339 bibi2d 342 con2bi 353 pm4.71r 558 xorass 1515 sblbis 2309 sbrbif 2311 eqabbw 2808 eqabbOLD 2875 eqabf 2928 eq0 4325 eq0rdv 4382 disj 4425 disj3 4429 rzal 4484 axrep4v 5254 axrep4 5255 axrep5 5257 axrep6 5258 axrep6OLD 5259 axsepgfromrep 5264 ax6vsep 5273 inex1 5287 axprALT 5392 zfpair2 5403 sucel 6428 suppvalbr 8163 bnj89 34752 fineqvrep 35126 axrepprim 35719 brtxpsd3 35914 bisym1 36437 bj-bixor 36609 eliminable-veqab 36884 bj-snsetex 36981 bj-reabeq 37045 bj-clex 37049 wl-3xorbi 37491 sn-axrep5v 42267 ifpidg 43515 nanorxor 44329 mo0sn 48794 |
| Copyright terms: Public domain | W3C validator |