| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
| 2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
| 4 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
| 5 | 4, 2 | bitr4di 289 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi1i 338 bibi12i 339 bibi2d 342 con2bi 353 pm4.71r 558 xorass 1516 sblbis 2310 sbrbif 2312 eqabbw 2804 eqabbOLD 2871 eqabf 2924 eq0 4300 eq0rdv 4357 disj3 4404 rzal 4459 axrep4v 5222 axrep4 5223 axrep5 5225 axrep6 5226 axrep6OLD 5227 axsepgfromrep 5232 ax6vsep 5241 inex1 5255 axprALT 5360 zfpair2 5371 sucel 6382 tz6.12-2 6809 suppvalbr 8094 bnj89 34731 fineqvrep 35135 axrepprim 35744 brtxpsd3 35936 bisym1 36459 bj-bixor 36631 eliminable-veqab 36906 bj-snsetex 37003 bj-reabeq 37067 bj-clex 37071 wl-3xorbi 37513 sn-axrep5v 42255 ifpidg 43530 nanorxor 44344 mo0sn 48853 |
| Copyright terms: Public domain | W3C validator |