MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi2i Structured version   Visualization version   GIF version

Theorem bibi2i 341
Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.)
Hypothesis
Ref Expression
bibi2i.1 (𝜑𝜓)
Assertion
Ref Expression
bibi2i ((𝜒𝜑) ↔ (𝜒𝜓))

Proof of Theorem bibi2i
StepHypRef Expression
1 id 22 . . 3 ((𝜒𝜑) → (𝜒𝜑))
2 bibi2i.1 . . 3 (𝜑𝜓)
31, 2bitrdi 290 . 2 ((𝜒𝜑) → (𝜒𝜓))
4 id 22 . . 3 ((𝜒𝜓) → (𝜒𝜓))
54, 2bitr4di 292 . 2 ((𝜒𝜓) → (𝜒𝜑))
63, 5impbii 212 1 ((𝜒𝜑) ↔ (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210
This theorem is referenced by:  bibi1i  342  bibi12i  343  bibi2d  346  con2bi  357  pm4.71r  562  xorass  1512  sblbis  2310  sbrbif  2312  abeq2w  2815  abeq2  2869  abeq2f  2937  pm13.183  3575  dfss2  3886  eq0  4258  eq0rdv  4319  disj  4362  disj3  4368  rzal  4420  axrep5  5185  axrep6  5186  axsepgfromrep  5190  ax6vsep  5196  inex1  5210  axprALT  5315  zfpair2  5323  sucel  6286  suppvalbr  7907  bnj89  32412  fineqvrep  32777  axrepprim  33356  brtxpsd3  33935  bisym1  34345  bj-bixor  34510  eliminable-veqab  34787  bj-snsetex  34890  bj-reabeq  34954  wl-3xorbi  35381  sn-axrep5v  39907  ifpidg  40783  nanorxor  41596  mo0sn  45834
  Copyright terms: Public domain W3C validator