![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi2i | Structured version Visualization version GIF version |
Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitrdi 287 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
4 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
5 | 4, 2 | bitr4di 289 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bibi1i 338 bibi12i 339 bibi2d 342 con2bi 353 pm4.71r 558 xorass 1511 sblbis 2307 sbrbif 2309 eqabbw 2812 eqabbOLD 2879 eqabf 2932 eq0 4355 eq0rdv 4412 disj 4455 disj3 4459 rzal 4514 axrep4v 5289 axrep4 5290 axrep5 5292 axrep6 5293 axrep6OLD 5294 axsepgfromrep 5299 ax6vsep 5308 inex1 5322 axprALT 5427 zfpair2 5438 sucel 6459 suppvalbr 8187 bnj89 34713 fineqvrep 35087 axrepprim 35681 brtxpsd3 35877 bisym1 36401 bj-bixor 36573 eliminable-veqab 36848 bj-snsetex 36945 bj-reabeq 37009 bj-clex 37013 wl-3xorbi 37455 sn-axrep5v 42233 ifpidg 43480 nanorxor 44300 mo0sn 48663 |
Copyright terms: Public domain | W3C validator |