MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi2i Structured version   Visualization version   GIF version

Theorem bibi2i 337
Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.)
Hypothesis
Ref Expression
bibi2i.1 (𝜑𝜓)
Assertion
Ref Expression
bibi2i ((𝜒𝜑) ↔ (𝜒𝜓))

Proof of Theorem bibi2i
StepHypRef Expression
1 id 22 . . 3 ((𝜒𝜑) → (𝜒𝜑))
2 bibi2i.1 . . 3 (𝜑𝜓)
31, 2bitrdi 287 . 2 ((𝜒𝜑) → (𝜒𝜓))
4 id 22 . . 3 ((𝜒𝜓) → (𝜒𝜓))
54, 2bitr4di 289 . 2 ((𝜒𝜓) → (𝜒𝜑))
63, 5impbii 209 1 ((𝜒𝜑) ↔ (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  bibi1i  338  bibi12i  339  bibi2d  342  con2bi  353  pm4.71r  558  xorass  1515  sblbis  2309  sbrbif  2311  eqabbw  2808  eqabbOLD  2875  eqabf  2928  eq0  4325  eq0rdv  4382  disj  4425  disj3  4429  rzal  4484  axrep4v  5254  axrep4  5255  axrep5  5257  axrep6  5258  axrep6OLD  5259  axsepgfromrep  5264  ax6vsep  5273  inex1  5287  axprALT  5392  zfpair2  5403  sucel  6428  suppvalbr  8163  bnj89  34752  fineqvrep  35126  axrepprim  35719  brtxpsd3  35914  bisym1  36437  bj-bixor  36609  eliminable-veqab  36884  bj-snsetex  36981  bj-reabeq  37045  bj-clex  37049  wl-3xorbi  37491  sn-axrep5v  42267  ifpidg  43515  nanorxor  44329  mo0sn  48794
  Copyright terms: Public domain W3C validator