![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi2i | Structured version Visualization version GIF version |
Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | syl6bb 288 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
4 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
5 | 4, 2 | syl6bbr 290 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
6 | 3, 5 | impbii 210 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 |
This theorem is referenced by: bibi1i 340 bibi12i 341 bibi2d 344 con2bi 355 pm4.71r 559 biadanOLD 816 xorass 1500 sblbis 2284 sbrbif 2286 sblbisvOLD 2294 sblbisALT 2566 abeq2 2914 abeq2f 2981 abeq2fOLD 2982 pm13.183 3597 pm13.183OLD 3598 disj3 4317 axrep5 5087 axrep6 5088 axsepgfromrep 5092 ax6vsep 5098 inex1 5112 axprALT 5214 zfpair2 5222 sucel 6139 suppvalbr 7685 bnj89 31608 axrepprim 32536 brtxpsd3 32966 bisym1 33376 bj-abeq2 33690 bj-snsetex 33880 sn-axrep5v 38638 ifpidg 39342 nanorxor 40175 |
Copyright terms: Public domain | W3C validator |