| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
| 2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
| 4 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
| 5 | 4, 2 | bitr4di 289 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi1i 338 bibi12i 339 bibi2d 342 con2bi 353 pm4.71r 558 xorass 1515 sblbis 2308 sbrbif 2310 eqabbw 2802 eqabbOLD 2868 eqabf 2921 eq0 4303 eq0rdv 4360 disj 4403 disj3 4407 rzal 4462 axrep4v 5226 axrep4 5227 axrep5 5229 axrep6 5230 axrep6OLD 5231 axsepgfromrep 5236 ax6vsep 5245 inex1 5259 axprALT 5364 zfpair2 5375 sucel 6387 suppvalbr 8104 bnj89 34690 fineqvrep 35072 axrepprim 35677 brtxpsd3 35872 bisym1 36395 bj-bixor 36567 eliminable-veqab 36842 bj-snsetex 36939 bj-reabeq 37003 bj-clex 37007 wl-3xorbi 37449 sn-axrep5v 42192 ifpidg 43467 nanorxor 44281 mo0sn 48804 |
| Copyright terms: Public domain | W3C validator |