MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi2i Structured version   Visualization version   GIF version

Theorem bibi2i 337
Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.)
Hypothesis
Ref Expression
bibi2i.1 (𝜑𝜓)
Assertion
Ref Expression
bibi2i ((𝜒𝜑) ↔ (𝜒𝜓))

Proof of Theorem bibi2i
StepHypRef Expression
1 id 22 . . 3 ((𝜒𝜑) → (𝜒𝜑))
2 bibi2i.1 . . 3 (𝜑𝜓)
31, 2bitrdi 287 . 2 ((𝜒𝜑) → (𝜒𝜓))
4 id 22 . . 3 ((𝜒𝜓) → (𝜒𝜓))
54, 2bitr4di 289 . 2 ((𝜒𝜓) → (𝜒𝜑))
63, 5impbii 209 1 ((𝜒𝜑) ↔ (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  bibi1i  338  bibi12i  339  bibi2d  342  con2bi  353  pm4.71r  558  xorass  1516  sblbis  2312  sbrbif  2314  eqabbw  2806  eqabf  2925  ab0w  4328  disj3  4403  axrep4v  5224  axrep4  5225  axrep5  5227  axrep6  5228  axrep6OLD  5229  axsepgfromrep  5234  ax6vsep  5243  inex1  5257  axprALT  5362  zfpair2  5373  sucel  6387  tz6.12-2  6815  suppvalbr  8100  bnj89  34754  fineqvrep  35158  axrepprim  35767  brtxpsd3  35959  bisym1  36484  bj-bixor  36656  eliminable-veqab  36931  bj-snsetex  37028  bj-reabeq  37092  bj-clex  37096  wl-3xorbi  37538  sn-axrep5v  42335  ifpidg  43609  nanorxor  44423  mo0sn  48941
  Copyright terms: Public domain W3C validator