| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bibi2i | ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜑)) | |
| 2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitrdi 287 | . 2 ⊢ ((𝜒 ↔ 𝜑) → (𝜒 ↔ 𝜓)) |
| 4 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
| 5 | 4, 2 | bitr4di 289 | . 2 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜑)) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi1i 338 bibi12i 339 bibi2d 342 con2bi 353 pm4.71r 558 xorass 1515 sblbis 2308 sbrbif 2310 eqabbw 2803 eqabbOLD 2869 eqabf 2922 eq0 4316 eq0rdv 4373 disj 4416 disj3 4420 rzal 4475 axrep4v 5242 axrep4 5243 axrep5 5245 axrep6 5246 axrep6OLD 5247 axsepgfromrep 5252 ax6vsep 5261 inex1 5275 axprALT 5380 zfpair2 5391 sucel 6411 suppvalbr 8146 bnj89 34718 fineqvrep 35092 axrepprim 35696 brtxpsd3 35891 bisym1 36414 bj-bixor 36586 eliminable-veqab 36861 bj-snsetex 36958 bj-reabeq 37022 bj-clex 37026 wl-3xorbi 37468 sn-axrep5v 42211 ifpidg 43487 nanorxor 44301 mo0sn 48808 |
| Copyright terms: Public domain | W3C validator |