| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notnotb | Structured version Visualization version GIF version | ||
| Description: Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| notnotb | ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 con2bi 353 con1bii 356 con2bii 357 iman 401 imor 853 anor 984 alex 1826 necon1abid 2971 necon4abid 2973 necon2abid 2975 necon2bbid 2976 necon1abii 2981 dfral2 3089 dfss6 3953 falseral0 4496 difsnpss 4788 xpimasn 6179 2mpo0 7661 bropfvvvv 8096 zfregs2 9752 nqereu 10948 ssnn0fi 14008 swrdnnn0nd 14679 pfxnd0 14711 zeo4 16362 sumodd 16412 ncoprmlnprm 16752 numedglnl 29128 ballotlemfc0 34530 ballotlemfcc 34531 bnj1143 34826 bnj1304 34855 bnj1189 35045 wl-ifp-ncond2 37488 tsim1 38159 tsna1 38173 ecinn0 38376 aks4d1p7 42101 aks6d1c5 42157 onsupmaxb 43238 ifpxorcor 43475 ifpnot23b 43481 ifpnot23c 43483 ifpnot23d 43484 iunrelexp0 43701 expandrex 44291 con5VD 44899 sineq0ALT 44936 nepnfltpnf 45349 nemnftgtmnft 45351 sge0gtfsumgt 46452 atbiffatnnb 46921 ichnreuop 47466 islininds2 48440 nnolog2flm1 48550 line2ylem 48711 |
| Copyright terms: Public domain | W3C validator |