![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notnotb | Structured version Visualization version GIF version |
Description: Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
notnotb | ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
3 | 1, 2 | impbii 209 | 1 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: notbid 318 con2bi 353 con1bii 356 con2bii 357 iman 401 imor 853 anor 984 alex 1823 nfnbiOLD 1853 necon1abid 2977 necon4abid 2979 necon2abid 2981 necon2bbid 2982 necon1abii 2987 dfral2 3097 dfss6 3985 falseral0 4522 difsnpss 4812 xpimasn 6207 2mpo0 7682 bropfvvvv 8116 zfregs2 9771 nqereu 10967 ssnn0fi 14023 swrdnnn0nd 14691 pfxnd0 14723 zeo4 16372 sumodd 16422 ncoprmlnprm 16762 numedglnl 29176 ballotlemfc0 34474 ballotlemfcc 34475 bnj1143 34783 bnj1304 34812 bnj1189 35002 wl-ifp-ncond2 37448 tsim1 38117 tsna1 38131 ecinn0 38335 aks4d1p7 42065 aks6d1c5 42121 onsupmaxb 43228 ifpxorcor 43466 ifpnot23b 43472 ifpnot23c 43474 ifpnot23d 43475 iunrelexp0 43692 expandrex 44288 con5VD 44898 sineq0ALT 44935 nepnfltpnf 45292 nemnftgtmnft 45294 sge0gtfsumgt 46399 atbiffatnnb 46862 ichnreuop 47397 islininds2 48330 nnolog2flm1 48440 line2ylem 48601 |
Copyright terms: Public domain | W3C validator |