![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notnotb | Structured version Visualization version GIF version |
Description: Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
notnotb | ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
3 | 1, 2 | impbii 209 | 1 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: notbid 318 con2bi 353 con1bii 356 con2bii 357 iman 401 imor 852 anor 983 alex 1824 nfnbiOLD 1854 necon1abid 2985 necon4abid 2987 necon2abid 2989 necon2bbid 2990 necon1abii 2995 dfral2 3105 dfss6 3998 falseral0 4539 difsnpss 4832 xpimasn 6216 2mpo0 7699 bropfvvvv 8133 zfregs2 9802 nqereu 10998 ssnn0fi 14036 swrdnnn0nd 14704 pfxnd0 14736 zeo4 16386 sumodd 16436 ncoprmlnprm 16775 numedglnl 29179 ballotlemfc0 34457 ballotlemfcc 34458 bnj1143 34766 bnj1304 34795 bnj1189 34985 wl-ifp-ncond2 37431 tsim1 38090 tsna1 38104 ecinn0 38309 aks4d1p7 42040 aks6d1c5 42096 onsupmaxb 43200 ifpxorcor 43438 ifpnot23b 43444 ifpnot23c 43446 ifpnot23d 43447 iunrelexp0 43664 expandrex 44261 con5VD 44871 sineq0ALT 44908 nepnfltpnf 45257 nemnftgtmnft 45259 sge0gtfsumgt 46364 atbiffatnnb 46827 ichnreuop 47346 islininds2 48213 nnolog2flm1 48324 line2ylem 48485 |
Copyright terms: Public domain | W3C validator |