Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > notnotb | Structured version Visualization version GIF version |
Description: Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
notnotb | ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: notbid 318 jcndOLD 337 con2bi 354 con1bii 357 con2bii 358 iman 402 imor 850 anor 980 ifpnOLD 1072 alex 1828 nfnbiOLD 1858 necon1abid 2982 necon4abid 2984 necon2abid 2986 necon2bbid 2987 necon1abii 2992 dfral2 3168 dfss6 3910 falseral0 4450 difsnpss 4740 xpimasn 6088 2mpo0 7518 bropfvvvv 7932 zfregs2 9491 nqereu 10685 ssnn0fi 13705 swrdnnn0nd 14369 pfxnd0 14401 zeo4 16047 sumodd 16097 ncoprmlnprm 16432 numedglnl 27514 ballotlemfc0 32459 ballotlemfcc 32460 bnj1143 32770 bnj1304 32799 bnj1189 32989 wl-ifp-ncond2 35636 tsim1 36288 tsna1 36302 ecinn0 36485 aks4d1p7 40091 ifpxorcor 41083 ifpnot23b 41089 ifpnot23c 41091 ifpnot23d 41092 iunrelexp0 41310 expandrex 41910 con5VD 42520 sineq0ALT 42557 nepnfltpnf 42881 nemnftgtmnft 42883 sge0gtfsumgt 43981 atbiffatnnb 44407 ichnreuop 44924 islininds2 45825 nnolog2flm1 45936 line2ylem 46097 |
Copyright terms: Public domain | W3C validator |