Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > notnotb | Structured version Visualization version GIF version |
Description: Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
notnotb | ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: notbid 317 jcndOLD 336 con2bi 353 con1bii 356 con2bii 357 iman 401 imor 849 anor 979 ifpnOLD 1071 noranOLD 1529 nororOLD 1531 alex 1829 nfnbiOLD 1859 necon1abid 2981 necon4abid 2983 necon2abid 2985 necon2bbid 2986 necon1abii 2991 dfral2 3164 dfss6 3906 falseral0 4447 difsnpss 4737 xpimasn 6077 2mpo0 7496 bropfvvvv 7903 zfregs2 9422 nqereu 10616 ssnn0fi 13633 swrdnnn0nd 14297 pfxnd0 14329 zeo4 15975 sumodd 16025 ncoprmlnprm 16360 numedglnl 27417 ballotlemfc0 32359 ballotlemfcc 32360 bnj1143 32670 bnj1304 32699 bnj1189 32889 wl-ifp-ncond2 35563 tsim1 36215 tsna1 36229 ecinn0 36412 aks4d1p7 40019 ifpxorcor 40981 ifpnot23b 40987 ifpnot23c 40989 ifpnot23d 40990 iunrelexp0 41199 expandrex 41799 con5VD 42409 sineq0ALT 42446 nepnfltpnf 42771 nemnftgtmnft 42773 sge0gtfsumgt 43871 atbiffatnnb 44294 ichnreuop 44812 islininds2 45713 nnolog2flm1 45824 line2ylem 45985 |
Copyright terms: Public domain | W3C validator |