| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notnotb | Structured version Visualization version GIF version | ||
| Description: Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| notnotb | ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 con2bi 353 con1bii 356 con2bii 357 iman 401 imor 853 anor 984 alex 1826 necon1abid 2963 necon4abid 2965 necon2abid 2967 necon2bbid 2968 necon1abii 2973 dfral2 3081 dfss6 3933 falseral0 4475 difsnpss 4767 xpimasn 6146 2mpo0 7618 bropfvvvv 8048 zfregs2 9662 nqereu 10858 ssnn0fi 13926 swrdnnn0nd 14597 pfxnd0 14629 zeo4 16284 sumodd 16334 ncoprmlnprm 16674 numedglnl 29124 ballotlemfc0 34477 ballotlemfcc 34478 bnj1143 34773 bnj1304 34802 bnj1189 34992 wl-ifp-ncond2 37446 tsim1 38117 tsna1 38131 ecinn0 38328 aks4d1p7 42064 aks6d1c5 42120 onsupmaxb 43221 ifpxorcor 43458 ifpnot23b 43464 ifpnot23c 43466 ifpnot23d 43467 iunrelexp0 43684 expandrex 44274 con5VD 44882 sineq0ALT 44919 nepnfltpnf 45331 nemnftgtmnft 45333 sge0gtfsumgt 46434 atbiffatnnb 46906 ichnreuop 47466 islininds2 48466 nnolog2flm1 48572 line2ylem 48733 |
| Copyright terms: Public domain | W3C validator |