| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notnotb | Structured version Visualization version GIF version | ||
| Description: Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| notnotb | ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 con2bi 353 con1bii 356 con2bii 357 iman 401 imor 853 anor 984 alex 1826 necon1abid 2963 necon4abid 2965 necon2abid 2967 necon2bbid 2968 necon1abii 2973 dfral2 3081 dfss6 3936 falseral0 4479 difsnpss 4771 xpimasn 6158 2mpo0 7638 bropfvvvv 8071 zfregs2 9686 nqereu 10882 ssnn0fi 13950 swrdnnn0nd 14621 pfxnd0 14653 zeo4 16308 sumodd 16358 ncoprmlnprm 16698 numedglnl 29071 ballotlemfc0 34484 ballotlemfcc 34485 bnj1143 34780 bnj1304 34809 bnj1189 34999 wl-ifp-ncond2 37453 tsim1 38124 tsna1 38138 ecinn0 38335 aks4d1p7 42071 aks6d1c5 42127 onsupmaxb 43228 ifpxorcor 43465 ifpnot23b 43471 ifpnot23c 43473 ifpnot23d 43474 iunrelexp0 43691 expandrex 44281 con5VD 44889 sineq0ALT 44926 nepnfltpnf 45338 nemnftgtmnft 45340 sge0gtfsumgt 46441 atbiffatnnb 46913 ichnreuop 47473 islininds2 48473 nnolog2flm1 48579 line2ylem 48740 |
| Copyright terms: Public domain | W3C validator |