| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notnotb | Structured version Visualization version GIF version | ||
| Description: Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| notnotb | ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 con2bi 353 con1bii 356 con2bii 357 iman 401 imor 853 anor 984 alex 1827 necon1abid 2966 necon4abid 2968 necon2abid 2970 necon2bbid 2971 necon1abii 2976 dfral2 3083 dfss6 3919 falseral0 4463 difsnpss 4756 xpimasn 6132 2mpo0 7595 bropfvvvv 8022 zfregs2 9623 nqereu 10820 ssnn0fi 13892 swrdnnn0nd 14564 pfxnd0 14596 zeo4 16249 sumodd 16299 ncoprmlnprm 16639 numedglnl 29122 ballotlemfc0 34506 ballotlemfcc 34507 bnj1143 34802 bnj1304 34831 bnj1189 35021 wl-ifp-ncond2 37509 tsim1 38180 tsna1 38194 ecinn0 38395 aks4d1p7 42186 aks6d1c5 42242 onsupmaxb 43342 ifpxorcor 43579 ifpnot23b 43585 ifpnot23c 43587 ifpnot23d 43588 iunrelexp0 43805 expandrex 44395 con5VD 45002 sineq0ALT 45039 nepnfltpnf 45451 nemnftgtmnft 45453 sge0gtfsumgt 46551 atbiffatnnb 47022 ichnreuop 47582 islininds2 48595 nnolog2flm1 48701 line2ylem 48862 |
| Copyright terms: Public domain | W3C validator |