![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notnotb | Structured version Visualization version GIF version |
Description: Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
notnotb | ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: notbid 318 jcndOLD 337 con2bi 354 con1bii 357 con2bii 358 iman 403 imor 852 anor 982 ifpnOLD 1074 alex 1829 nfnbiOLD 1859 necon1abid 2980 necon4abid 2982 necon2abid 2984 necon2bbid 2985 necon1abii 2990 dfral2 3100 dfss6 3972 falseral0 4520 difsnpss 4811 xpimasn 6185 2mpo0 7655 bropfvvvv 8078 zfregs2 9728 nqereu 10924 ssnn0fi 13950 swrdnnn0nd 14606 pfxnd0 14638 zeo4 16281 sumodd 16331 ncoprmlnprm 16664 numedglnl 28404 ballotlemfc0 33491 ballotlemfcc 33492 bnj1143 33801 bnj1304 33830 bnj1189 34020 wl-ifp-ncond2 36346 tsim1 36998 tsna1 37012 ecinn0 37222 aks4d1p7 40948 onsupmaxb 41988 ifpxorcor 42227 ifpnot23b 42233 ifpnot23c 42235 ifpnot23d 42236 iunrelexp0 42453 expandrex 43051 con5VD 43661 sineq0ALT 43698 nepnfltpnf 44052 nemnftgtmnft 44054 sge0gtfsumgt 45159 atbiffatnnb 45622 ichnreuop 46140 islininds2 47165 nnolog2flm1 47276 line2ylem 47437 |
Copyright terms: Public domain | W3C validator |