Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > notnotb | Structured version Visualization version GIF version |
Description: Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
notnotb | ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 144 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | notnotr 132 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
3 | 1, 2 | impbii 212 | 1 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: notbid 321 jcndOLD 340 con2bi 357 con1bii 360 con2bii 361 iman 405 imor 850 anor 980 ifpnOLD 1070 noranOLD 1528 nororOLD 1530 alex 1827 nfnbi 1856 necon1abid 2989 necon4abid 2991 necon2abid 2993 necon2bbid 2994 necon1abii 2999 dfral2 3164 dfss6 3881 falseral0 4412 difsnpss 4697 xpimasn 6014 2mpo0 7390 bropfvvvv 7792 zfregs2 9208 nqereu 10389 ssnn0fi 13402 swrdnnn0nd 14065 pfxnd0 14097 zeo4 15739 sumodd 15789 ncoprmlnprm 16123 numedglnl 27036 ballotlemfc0 31978 ballotlemfcc 31979 bnj1143 32290 bnj1304 32319 bnj1189 32509 wl-ifp-ncond2 35162 tsim1 35848 tsna1 35862 ecinn0 36047 ifpxorcor 40557 ifpnot23b 40563 ifpnot23c 40565 ifpnot23d 40566 iunrelexp0 40776 expandrex 41373 con5VD 41979 sineq0ALT 42016 nepnfltpnf 42342 nemnftgtmnft 42344 sge0gtfsumgt 43448 atbiffatnnb 43871 ichnreuop 44357 islininds2 45258 nnolog2flm1 45369 line2ylem 45530 |
Copyright terms: Public domain | W3C validator |