| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notnotb | Structured version Visualization version GIF version | ||
| Description: Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| notnotb | ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 2 | notnotr 130 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: notbid 318 con2bi 353 con1bii 356 con2bii 357 iman 401 imor 853 anor 984 alex 1826 necon1abid 2963 necon4abid 2965 necon2abid 2967 necon2bbid 2968 necon1abii 2973 dfral2 3080 dfss6 3925 falseral0 4467 difsnpss 4758 xpimasn 6134 2mpo0 7598 bropfvvvv 8025 zfregs2 9629 nqereu 10823 ssnn0fi 13892 swrdnnn0nd 14563 pfxnd0 14595 zeo4 16249 sumodd 16299 ncoprmlnprm 16639 numedglnl 29089 ballotlemfc0 34467 ballotlemfcc 34468 bnj1143 34763 bnj1304 34792 bnj1189 34982 wl-ifp-ncond2 37449 tsim1 38120 tsna1 38134 ecinn0 38331 aks4d1p7 42066 aks6d1c5 42122 onsupmaxb 43222 ifpxorcor 43459 ifpnot23b 43465 ifpnot23c 43467 ifpnot23d 43468 iunrelexp0 43685 expandrex 44275 con5VD 44883 sineq0ALT 44920 nepnfltpnf 45332 nemnftgtmnft 45334 sge0gtfsumgt 46434 atbiffatnnb 46906 ichnreuop 47466 islininds2 48479 nnolog2flm1 48585 line2ylem 48746 |
| Copyright terms: Public domain | W3C validator |