![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notnotb | Structured version Visualization version GIF version |
Description: Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
notnotb | ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 144 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | notnotr 132 | . 2 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
3 | 1, 2 | impbii 210 | 1 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 |
This theorem is referenced by: notbid 319 jcn 338 con2bi 355 con1bii 358 con2bii 359 iman 402 imor 848 anor 977 ifpn 1065 noranOLD 1519 nororOLD 1521 alex 1811 nfnbi 1840 necon1abid 3024 necon4abid 3026 necon2abid 3028 necon2bbid 3029 necon1abii 3034 dfral2 3203 ralnex2OLD 3227 ralnex3OLD 3229 dfss6 3885 falseral0 4379 difsnpss 4653 xpimasn 5925 2mpo0 7259 bropfvvvv 7650 zfregs2 9028 nqereu 10204 ssnn0fi 13207 swrdnnn0nd 13858 pfxnd0 13890 zeo4 15524 sumodd 15576 ncoprmlnprm 15901 numedglnl 26616 ballotlemfc0 31363 ballotlemfcc 31364 bnj1143 31675 bnj1304 31704 bnj1189 31891 tsim1 34961 tsna1 34975 ecinn0 35160 ifpxorcor 39348 ifpnot23b 39354 ifpnot23c 39356 ifpnot23d 39357 iunrelexp0 39553 expandrex 40146 con5VD 40794 sineq0ALT 40831 nepnfltpnf 41172 nemnftgtmnft 41174 sge0gtfsumgt 42289 atbiffatnnb 42711 ichnreuop 43138 islininds2 44041 nnolog2flm1 44153 line2ylem 44241 |
Copyright terms: Public domain | W3C validator |