Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logic1a Structured version   Visualization version   GIF version

Theorem logic1a 46195
Description: Variant of logic1 46194. (Contributed by Zhi Wang, 30-Aug-2024.)
Hypotheses
Ref Expression
pm4.71da.1 (𝜑 → (𝜓𝜒))
logic1a.2 ((𝜑𝜓) → (𝜃𝜏))
Assertion
Ref Expression
logic1a (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))

Proof of Theorem logic1a
StepHypRef Expression
1 pm4.71da.1 . 2 (𝜑 → (𝜓𝜒))
2 logic1a.2 . . 3 ((𝜑𝜓) → (𝜃𝜏))
32ex 414 . 2 (𝜑 → (𝜓 → (𝜃𝜏)))
41, 3logic1 46194 1 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  ralbidb  46203
  Copyright terms: Public domain W3C validator