Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logic1 Structured version   Visualization version   GIF version

Theorem logic1 46024
Description: Distribution of implication over biconditional with replacement (deduction form). (Contributed by Zhi Wang, 30-Aug-2024.)
Hypotheses
Ref Expression
pm4.71da.1 (𝜑 → (𝜓𝜒))
logic1.2 (𝜑 → (𝜓 → (𝜃𝜏)))
Assertion
Ref Expression
logic1 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))

Proof of Theorem logic1
StepHypRef Expression
1 logic1.2 . . 3 (𝜑 → (𝜓 → (𝜃𝜏)))
21pm5.74d 272 . 2 (𝜑 → ((𝜓𝜃) ↔ (𝜓𝜏)))
3 pm4.71da.1 . . 3 (𝜑 → (𝜓𝜒))
43imbi1d 341 . 2 (𝜑 → ((𝜓𝜏) ↔ (𝜒𝜏)))
52, 4bitrd 278 1 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  logic1a  46025  logic2  46026
  Copyright terms: Public domain W3C validator