| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralbidb | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier and additional condition (deduction form). See ralbidc 48721 for a more generalized form. (Contributed by Zhi Wang, 6-Sep-2024.) |
| Ref | Expression |
|---|---|
| ralbidb.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
| ralbidb.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| ralbidb | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥 ∈ 𝐵 (𝜓 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbidb.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) | |
| 2 | ralbidb.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | logic1a 48712 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜒) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜓) → 𝜃))) |
| 4 | impexp 450 | . . 3 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜓) → 𝜃) ↔ (𝑥 ∈ 𝐵 → (𝜓 → 𝜃))) | |
| 5 | 3, 4 | bitrdi 287 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜒) ↔ (𝑥 ∈ 𝐵 → (𝜓 → 𝜃)))) |
| 6 | 5 | ralbidv2 3174 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥 ∈ 𝐵 (𝜓 → 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |