Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logic2 Structured version   Visualization version   GIF version

Theorem logic2 46026
Description: Variant of logic1 46024. (Contributed by Zhi Wang, 30-Aug-2024.)
Hypotheses
Ref Expression
pm4.71da.1 (𝜑 → (𝜓𝜒))
logic2.2 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
Assertion
Ref Expression
logic2 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))

Proof of Theorem logic2
StepHypRef Expression
1 pm4.71da.1 . 2 (𝜑 → (𝜓𝜒))
21pm4.71da 46023 . . 3 (𝜑 → (𝜓 ↔ (𝜓𝜒)))
3 logic2.2 . . 3 (𝜑 → ((𝜓𝜒) → (𝜃𝜏)))
42, 3sylbid 239 . 2 (𝜑 → (𝜓 → (𝜃𝜏)))
51, 4logic1 46024 1 (𝜑 → ((𝜓𝜃) ↔ (𝜒𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  ralbidc  46034
  Copyright terms: Public domain W3C validator