Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyv1 Structured version   Visualization version   GIF version

Theorem mdandyv1 44689
Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.)
Hypotheses
Ref Expression
mdandyv1.1 (𝜑 ↔ ⊥)
mdandyv1.2 (𝜓 ↔ ⊤)
mdandyv1.3 (𝜒 ↔ ⊤)
mdandyv1.4 (𝜃 ↔ ⊥)
mdandyv1.5 (𝜏 ↔ ⊥)
mdandyv1.6 (𝜂 ↔ ⊥)
Assertion
Ref Expression
mdandyv1 ((((𝜒𝜓) ∧ (𝜃𝜑)) ∧ (𝜏𝜑)) ∧ (𝜂𝜑))

Proof of Theorem mdandyv1
StepHypRef Expression
1 mdandyv1.3 . . . . 5 (𝜒 ↔ ⊤)
2 mdandyv1.2 . . . . 5 (𝜓 ↔ ⊤)
31, 2bothtbothsame 44638 . . . 4 (𝜒𝜓)
4 mdandyv1.4 . . . . 5 (𝜃 ↔ ⊥)
5 mdandyv1.1 . . . . 5 (𝜑 ↔ ⊥)
64, 5bothfbothsame 44639 . . . 4 (𝜃𝜑)
73, 6pm3.2i 472 . . 3 ((𝜒𝜓) ∧ (𝜃𝜑))
8 mdandyv1.5 . . . 4 (𝜏 ↔ ⊥)
98, 5bothfbothsame 44639 . . 3 (𝜏𝜑)
107, 9pm3.2i 472 . 2 (((𝜒𝜓) ∧ (𝜃𝜑)) ∧ (𝜏𝜑))
11 mdandyv1.6 . . 3 (𝜂 ↔ ⊥)
1211, 5bothfbothsame 44639 . 2 (𝜂𝜑)
1310, 12pm3.2i 472 1 ((((𝜒𝜓) ∧ (𝜃𝜑)) ∧ (𝜏𝜑)) ∧ (𝜂𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wtru 1540  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator