| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdandyvrx0 | Structured version Visualization version GIF version | ||
| Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| Ref | Expression |
|---|---|
| mdandyvrx0.1 | ⊢ (𝜑 ⊻ 𝜁) |
| mdandyvrx0.2 | ⊢ (𝜓 ⊻ 𝜎) |
| mdandyvrx0.3 | ⊢ (𝜒 ↔ 𝜑) |
| mdandyvrx0.4 | ⊢ (𝜃 ↔ 𝜑) |
| mdandyvrx0.5 | ⊢ (𝜏 ↔ 𝜑) |
| mdandyvrx0.6 | ⊢ (𝜂 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| mdandyvrx0 | ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdandyvrx0.1 | . . . . 5 ⊢ (𝜑 ⊻ 𝜁) | |
| 2 | mdandyvrx0.3 | . . . . 5 ⊢ (𝜒 ↔ 𝜑) | |
| 3 | 1, 2 | axorbciffatcxorb 46901 | . . . 4 ⊢ (𝜒 ⊻ 𝜁) |
| 4 | mdandyvrx0.4 | . . . . 5 ⊢ (𝜃 ↔ 𝜑) | |
| 5 | 1, 4 | axorbciffatcxorb 46901 | . . . 4 ⊢ (𝜃 ⊻ 𝜁) |
| 6 | 3, 5 | pm3.2i 470 | . . 3 ⊢ ((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) |
| 7 | mdandyvrx0.5 | . . . 4 ⊢ (𝜏 ↔ 𝜑) | |
| 8 | 1, 7 | axorbciffatcxorb 46901 | . . 3 ⊢ (𝜏 ⊻ 𝜁) |
| 9 | 6, 8 | pm3.2i 470 | . 2 ⊢ (((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) |
| 10 | mdandyvrx0.6 | . . 3 ⊢ (𝜂 ↔ 𝜑) | |
| 11 | 1, 10 | axorbciffatcxorb 46901 | . 2 ⊢ (𝜂 ⊻ 𝜁) |
| 12 | 9, 11 | pm3.2i 470 | 1 ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊻ wxo 1511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-xor 1512 |
| This theorem is referenced by: mdandyvrx15 46992 |
| Copyright terms: Public domain | W3C validator |