|   | Mathbox for Jarvin Udandy | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdandyvrx1 | Structured version Visualization version GIF version | ||
| Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| mdandyvrx1.1 | ⊢ (𝜑 ⊻ 𝜁) | 
| mdandyvrx1.2 | ⊢ (𝜓 ⊻ 𝜎) | 
| mdandyvrx1.3 | ⊢ (𝜒 ↔ 𝜓) | 
| mdandyvrx1.4 | ⊢ (𝜃 ↔ 𝜑) | 
| mdandyvrx1.5 | ⊢ (𝜏 ↔ 𝜑) | 
| mdandyvrx1.6 | ⊢ (𝜂 ↔ 𝜑) | 
| Ref | Expression | 
|---|---|
| mdandyvrx1 | ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜁)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mdandyvrx1.2 | . . . . 5 ⊢ (𝜓 ⊻ 𝜎) | |
| 2 | mdandyvrx1.3 | . . . . 5 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 1, 2 | axorbciffatcxorb 46922 | . . . 4 ⊢ (𝜒 ⊻ 𝜎) | 
| 4 | mdandyvrx1.1 | . . . . 5 ⊢ (𝜑 ⊻ 𝜁) | |
| 5 | mdandyvrx1.4 | . . . . 5 ⊢ (𝜃 ↔ 𝜑) | |
| 6 | 4, 5 | axorbciffatcxorb 46922 | . . . 4 ⊢ (𝜃 ⊻ 𝜁) | 
| 7 | 3, 6 | pm3.2i 470 | . . 3 ⊢ ((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) | 
| 8 | mdandyvrx1.5 | . . . 4 ⊢ (𝜏 ↔ 𝜑) | |
| 9 | 4, 8 | axorbciffatcxorb 46922 | . . 3 ⊢ (𝜏 ⊻ 𝜁) | 
| 10 | 7, 9 | pm3.2i 470 | . 2 ⊢ (((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) | 
| 11 | mdandyvrx1.6 | . . 3 ⊢ (𝜂 ↔ 𝜑) | |
| 12 | 4, 11 | axorbciffatcxorb 46922 | . 2 ⊢ (𝜂 ⊻ 𝜁) | 
| 13 | 10, 12 | pm3.2i 470 | 1 ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜁)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊻ wxo 1510 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-xor 1511 | 
| This theorem is referenced by: mdandyvrx14 47012 | 
| Copyright terms: Public domain | W3C validator |