Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > merco1lem10 | Structured version Visualization version GIF version |
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1716. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merco1lem10 | ⊢ (((((𝜑 → 𝜓) → 𝜒) → (𝜏 → 𝜒)) → 𝜑) → (𝜃 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | merco1 1716 | . . 3 ⊢ (((((𝜒 → 𝜑) → (𝜏 → ⊥)) → 𝜑) → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜒) → (𝜏 → 𝜒))) | |
2 | merco1lem2 1720 | . . 3 ⊢ ((((((𝜒 → 𝜑) → (𝜏 → ⊥)) → 𝜑) → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜒) → (𝜏 → 𝜒))) → ((((𝜑 → 𝜓) → (𝜃 → ⊥)) → ((((𝜒 → 𝜑) → (𝜏 → ⊥)) → 𝜑) → ⊥)) → (((𝜑 → 𝜓) → 𝜒) → (𝜏 → 𝜒)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((((𝜑 → 𝜓) → (𝜃 → ⊥)) → ((((𝜒 → 𝜑) → (𝜏 → ⊥)) → 𝜑) → ⊥)) → (((𝜑 → 𝜓) → 𝜒) → (𝜏 → 𝜒))) |
4 | merco1 1716 | . 2 ⊢ (((((𝜑 → 𝜓) → (𝜃 → ⊥)) → ((((𝜒 → 𝜑) → (𝜏 → ⊥)) → 𝜑) → ⊥)) → (((𝜑 → 𝜓) → 𝜒) → (𝜏 → 𝜒))) → (((((𝜑 → 𝜓) → 𝜒) → (𝜏 → 𝜒)) → 𝜑) → (𝜃 → 𝜑))) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ (((((𝜑 → 𝜓) → 𝜒) → (𝜏 → 𝜒)) → 𝜑) → (𝜃 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: retbwax1 1738 |
Copyright terms: Public domain | W3C validator |