| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > merco1lem2 | Structured version Visualization version GIF version | ||
| Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1713. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| merco1lem2 | ⊢ (((𝜑 → 𝜓) → 𝜒) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retbwax2 1716 | . . 3 ⊢ ((((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥) → ((𝜒 → 𝜑) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥))) | |
| 2 | merco1 1713 | . . 3 ⊢ (((((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥) → ((𝜒 → 𝜑) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥))) → ((((𝜒 → 𝜑) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥)) → 𝜓) → (𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((((𝜒 → 𝜑) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥)) → 𝜓) → (𝜑 → 𝜓)) |
| 4 | merco1 1713 | . 2 ⊢ (((((𝜒 → 𝜑) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥)) → 𝜓) → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜒) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → 𝜒))) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ (((𝜑 → 𝜓) → 𝜒) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: merco1lem3 1718 merco1lem10 1726 merco1lem11 1727 merco1lem18 1734 |
| Copyright terms: Public domain | W3C validator |