Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > merco1lem2 | Structured version Visualization version GIF version |
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1716. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merco1lem2 | ⊢ (((𝜑 → 𝜓) → 𝜒) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retbwax2 1719 | . . 3 ⊢ ((((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥) → ((𝜒 → 𝜑) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥))) | |
2 | merco1 1716 | . . 3 ⊢ (((((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥) → ((𝜒 → 𝜑) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥))) → ((((𝜒 → 𝜑) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥)) → 𝜓) → (𝜑 → 𝜓))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((((𝜒 → 𝜑) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥)) → 𝜓) → (𝜑 → 𝜓)) |
4 | merco1 1716 | . 2 ⊢ (((((𝜒 → 𝜑) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → ⊥)) → 𝜓) → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜒) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → 𝜒))) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ (((𝜑 → 𝜓) → 𝜒) → (((𝜓 → 𝜏) → (𝜑 → ⊥)) → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: merco1lem3 1721 merco1lem10 1729 merco1lem11 1730 merco1lem18 1737 |
Copyright terms: Public domain | W3C validator |