Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3anr3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 19-Oct-2007.) |
Ref | Expression |
---|---|
mp3anr3.1 | ⊢ 𝜃 |
mp3anr3.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
mp3anr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3anr3.1 | . . 3 ⊢ 𝜃 | |
2 | mp3anr3.2 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
3 | 2 | ancoms 459 | . . 3 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜑) → 𝜏) |
4 | 1, 3 | mp3anl3 1456 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜏) |
5 | 4 | ancoms 459 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: splid 14466 relogbdiv 25929 |
Copyright terms: Public domain | W3C validator |