|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mp3anr3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 19-Oct-2007.) | 
| Ref | Expression | 
|---|---|
| mp3anr3.1 | ⊢ 𝜃 | 
| mp3anr3.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | 
| Ref | Expression | 
|---|---|
| mp3anr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp3anr3.1 | . . 3 ⊢ 𝜃 | |
| 2 | mp3anr3.2 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 2 | ancoms 458 | . . 3 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜑) → 𝜏) | 
| 4 | 1, 3 | mp3anl3 1458 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜏) | 
| 5 | 4 | ancoms 458 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 | 
| This theorem is referenced by: splid 14792 relogbdiv 26823 | 
| Copyright terms: Public domain | W3C validator |