| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > splid | Structured version Visualization version GIF version | ||
| Description: Splicing a subword for the same subword makes no difference. (Contributed by Stefan O'Rear, 20-Aug-2015.) (Proof shortened by AV, 14-Oct-2022.) |
| Ref | Expression |
|---|---|
| splid | ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice 〈𝑋, 𝑌, (𝑆 substr 〈𝑋, 𝑌〉)〉) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7443 | . . 3 ⊢ (𝑆 substr 〈𝑋, 𝑌〉) ∈ V | |
| 2 | splval 14774 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)) ∧ (𝑆 substr 〈𝑋, 𝑌〉) ∈ V)) → (𝑆 splice 〈𝑋, 𝑌, (𝑆 substr 〈𝑋, 𝑌〉)〉) = (((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉))) | |
| 3 | 1, 2 | mp3anr3 1462 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice 〈𝑋, 𝑌, (𝑆 substr 〈𝑋, 𝑌〉)〉) = (((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉))) |
| 4 | ccatpfx 14724 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) = (𝑆 prefix 𝑌)) | |
| 5 | 4 | 3expb 1120 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) = (𝑆 prefix 𝑌)) |
| 6 | 5 | oveq1d 7425 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉))) |
| 7 | simpl 482 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 𝑆 ∈ Word 𝐴) | |
| 8 | simprr 772 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...(♯‘𝑆))) | |
| 9 | elfzuz2 13551 | . . . . . . 7 ⊢ (𝑌 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ≥‘0)) | |
| 10 | 9 | ad2antll 729 | . . . . . 6 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (♯‘𝑆) ∈ (ℤ≥‘0)) |
| 11 | eluzfz2 13554 | . . . . . 6 ⊢ ((♯‘𝑆) ∈ (ℤ≥‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
| 13 | ccatpfx 14724 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = (𝑆 prefix (♯‘𝑆))) | |
| 14 | 7, 8, 12, 13 | syl3anc 1373 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = (𝑆 prefix (♯‘𝑆))) |
| 15 | pfxid 14707 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)) = 𝑆) | |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 prefix (♯‘𝑆)) = 𝑆) |
| 17 | 14, 16 | eqtrd 2771 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = 𝑆) |
| 18 | 6, 17 | eqtrd 2771 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = 𝑆) |
| 19 | 3, 18 | eqtrd 2771 | 1 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice 〈𝑋, 𝑌, (𝑆 substr 〈𝑋, 𝑌〉)〉) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 〈cop 4612 〈cotp 4614 ‘cfv 6536 (class class class)co 7410 0cc0 11134 ℤ≥cuz 12857 ...cfz 13529 ♯chash 14353 Word cword 14536 ++ cconcat 14593 substr csubstr 14663 prefix cpfx 14693 splice csplice 14772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-concat 14594 df-substr 14664 df-pfx 14694 df-splice 14773 |
| This theorem is referenced by: psgnunilem2 19481 |
| Copyright terms: Public domain | W3C validator |