| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > splid | Structured version Visualization version GIF version | ||
| Description: Splicing a subword for the same subword makes no difference. (Contributed by Stefan O'Rear, 20-Aug-2015.) (Proof shortened by AV, 14-Oct-2022.) |
| Ref | Expression |
|---|---|
| splid | ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice 〈𝑋, 𝑌, (𝑆 substr 〈𝑋, 𝑌〉)〉) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7402 | . . 3 ⊢ (𝑆 substr 〈𝑋, 𝑌〉) ∈ V | |
| 2 | splval 14692 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)) ∧ (𝑆 substr 〈𝑋, 𝑌〉) ∈ V)) → (𝑆 splice 〈𝑋, 𝑌, (𝑆 substr 〈𝑋, 𝑌〉)〉) = (((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉))) | |
| 3 | 1, 2 | mp3anr3 1462 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice 〈𝑋, 𝑌, (𝑆 substr 〈𝑋, 𝑌〉)〉) = (((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉))) |
| 4 | ccatpfx 14642 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) = (𝑆 prefix 𝑌)) | |
| 5 | 4 | 3expb 1120 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) = (𝑆 prefix 𝑌)) |
| 6 | 5 | oveq1d 7384 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉))) |
| 7 | simpl 482 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 𝑆 ∈ Word 𝐴) | |
| 8 | simprr 772 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...(♯‘𝑆))) | |
| 9 | elfzuz2 13466 | . . . . . . 7 ⊢ (𝑌 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ≥‘0)) | |
| 10 | 9 | ad2antll 729 | . . . . . 6 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (♯‘𝑆) ∈ (ℤ≥‘0)) |
| 11 | eluzfz2 13469 | . . . . . 6 ⊢ ((♯‘𝑆) ∈ (ℤ≥‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
| 13 | ccatpfx 14642 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = (𝑆 prefix (♯‘𝑆))) | |
| 14 | 7, 8, 12, 13 | syl3anc 1373 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = (𝑆 prefix (♯‘𝑆))) |
| 15 | pfxid 14625 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)) = 𝑆) | |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 prefix (♯‘𝑆)) = 𝑆) |
| 17 | 14, 16 | eqtrd 2764 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = 𝑆) |
| 18 | 6, 17 | eqtrd 2764 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = 𝑆) |
| 19 | 3, 18 | eqtrd 2764 | 1 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice 〈𝑋, 𝑌, (𝑆 substr 〈𝑋, 𝑌〉)〉) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 〈cotp 4593 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ℤ≥cuz 12769 ...cfz 13444 ♯chash 14271 Word cword 14454 ++ cconcat 14511 substr csubstr 14581 prefix cpfx 14611 splice csplice 14690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-concat 14512 df-substr 14582 df-pfx 14612 df-splice 14691 |
| This theorem is referenced by: psgnunilem2 19401 |
| Copyright terms: Public domain | W3C validator |