![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > splid | Structured version Visualization version GIF version |
Description: Splicing a subword for the same subword makes no difference. (Contributed by Stefan O'Rear, 20-Aug-2015.) (Proof shortened by AV, 14-Oct-2022.) |
Ref | Expression |
---|---|
splid | ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice 〈𝑋, 𝑌, (𝑆 substr 〈𝑋, 𝑌〉)〉) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7459 | . . 3 ⊢ (𝑆 substr 〈𝑋, 𝑌〉) ∈ V | |
2 | splval 14741 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)) ∧ (𝑆 substr 〈𝑋, 𝑌〉) ∈ V)) → (𝑆 splice 〈𝑋, 𝑌, (𝑆 substr 〈𝑋, 𝑌〉)〉) = (((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉))) | |
3 | 1, 2 | mp3anr3 1456 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice 〈𝑋, 𝑌, (𝑆 substr 〈𝑋, 𝑌〉)〉) = (((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉))) |
4 | ccatpfx 14691 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) = (𝑆 prefix 𝑌)) | |
5 | 4 | 3expb 1117 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) = (𝑆 prefix 𝑌)) |
6 | 5 | oveq1d 7441 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉))) |
7 | simpl 481 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 𝑆 ∈ Word 𝐴) | |
8 | simprr 771 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...(♯‘𝑆))) | |
9 | elfzuz2 13546 | . . . . . . 7 ⊢ (𝑌 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ≥‘0)) | |
10 | 9 | ad2antll 727 | . . . . . 6 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (♯‘𝑆) ∈ (ℤ≥‘0)) |
11 | eluzfz2 13549 | . . . . . 6 ⊢ ((♯‘𝑆) ∈ (ℤ≥‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
13 | ccatpfx 14691 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = (𝑆 prefix (♯‘𝑆))) | |
14 | 7, 8, 12, 13 | syl3anc 1368 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = (𝑆 prefix (♯‘𝑆))) |
15 | pfxid 14674 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)) = 𝑆) | |
16 | 15 | adantr 479 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 prefix (♯‘𝑆)) = 𝑆) |
17 | 14, 16 | eqtrd 2768 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = 𝑆) |
18 | 6, 17 | eqtrd 2768 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (((𝑆 prefix 𝑋) ++ (𝑆 substr 〈𝑋, 𝑌〉)) ++ (𝑆 substr 〈𝑌, (♯‘𝑆)〉)) = 𝑆) |
19 | 3, 18 | eqtrd 2768 | 1 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice 〈𝑋, 𝑌, (𝑆 substr 〈𝑋, 𝑌〉)〉) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 〈cop 4638 〈cotp 4640 ‘cfv 6553 (class class class)co 7426 0cc0 11146 ℤ≥cuz 12860 ...cfz 13524 ♯chash 14329 Word cword 14504 ++ cconcat 14560 substr csubstr 14630 prefix cpfx 14660 splice csplice 14739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-ot 4641 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-hash 14330 df-word 14505 df-concat 14561 df-substr 14631 df-pfx 14661 df-splice 14740 |
This theorem is referenced by: psgnunilem2 19457 |
Copyright terms: Public domain | W3C validator |