![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > splid | Structured version Visualization version GIF version |
Description: Splicing a subword for the same subword makes no difference. (Contributed by Stefan O'Rear, 20-Aug-2015.) (Proof shortened by AV, 14-Oct-2022.) |
Ref | Expression |
---|---|
splid | ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice ⟨𝑋, 𝑌, (𝑆 substr ⟨𝑋, 𝑌⟩)⟩) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7435 | . . 3 ⊢ (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ V | |
2 | splval 14703 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)) ∧ (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ V)) → (𝑆 splice ⟨𝑋, 𝑌, (𝑆 substr ⟨𝑋, 𝑌⟩)⟩) = (((𝑆 prefix 𝑋) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩))) | |
3 | 1, 2 | mp3anr3 1456 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice ⟨𝑋, 𝑌, (𝑆 substr ⟨𝑋, 𝑌⟩)⟩) = (((𝑆 prefix 𝑋) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩))) |
4 | ccatpfx 14653 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑋) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) = (𝑆 prefix 𝑌)) | |
5 | 4 | 3expb 1117 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑋) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) = (𝑆 prefix 𝑌)) |
6 | 5 | oveq1d 7417 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (((𝑆 prefix 𝑋) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩)) = ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩))) |
7 | simpl 482 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 𝑆 ∈ Word 𝐴) | |
8 | simprr 770 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...(♯‘𝑆))) | |
9 | elfzuz2 13507 | . . . . . . 7 ⊢ (𝑌 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ≥‘0)) | |
10 | 9 | ad2antll 726 | . . . . . 6 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (♯‘𝑆) ∈ (ℤ≥‘0)) |
11 | eluzfz2 13510 | . . . . . 6 ⊢ ((♯‘𝑆) ∈ (ℤ≥‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
13 | ccatpfx 14653 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩)) = (𝑆 prefix (♯‘𝑆))) | |
14 | 7, 8, 12, 13 | syl3anc 1368 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩)) = (𝑆 prefix (♯‘𝑆))) |
15 | pfxid 14636 | . . . . 5 ⊢ (𝑆 ∈ Word 𝐴 → (𝑆 prefix (♯‘𝑆)) = 𝑆) | |
16 | 15 | adantr 480 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 prefix (♯‘𝑆)) = 𝑆) |
17 | 14, 16 | eqtrd 2764 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 prefix 𝑌) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩)) = 𝑆) |
18 | 6, 17 | eqtrd 2764 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (((𝑆 prefix 𝑋) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩)) = 𝑆) |
19 | 3, 18 | eqtrd 2764 | 1 ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice ⟨𝑋, 𝑌, (𝑆 substr ⟨𝑋, 𝑌⟩)⟩) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ⟨cop 4627 ⟨cotp 4629 ‘cfv 6534 (class class class)co 7402 0cc0 11107 ℤ≥cuz 12821 ...cfz 13485 ♯chash 14291 Word cword 14466 ++ cconcat 14522 substr csubstr 14592 prefix cpfx 14622 splice csplice 14701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-ot 4630 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-card 9931 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13486 df-fzo 13629 df-hash 14292 df-word 14467 df-concat 14523 df-substr 14593 df-pfx 14623 df-splice 14702 |
This theorem is referenced by: psgnunilem2 19411 |
Copyright terms: Public domain | W3C validator |