Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpbiran4d Structured version   Visualization version   GIF version

Theorem mpbiran4d 46031
Description: Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 27-Sep-2024.)
Hypotheses
Ref Expression
mpbiran3d.1 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
mpbiran4d.2 ((𝜑𝜃) → 𝜒)
Assertion
Ref Expression
mpbiran4d (𝜑 → (𝜓𝜃))

Proof of Theorem mpbiran4d
StepHypRef Expression
1 mpbiran3d.1 . . 3 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
21biancomd 463 . 2 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
3 mpbiran4d.2 . 2 ((𝜑𝜃) → 𝜒)
42, 3mpbiran3d 46030 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator