| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpbiran3d | Structured version Visualization version GIF version | ||
| Description: Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| mpbiran3d.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| mpbiran3d.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpbiran3d | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran3d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | simprbda 498 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | 2 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | mpbiran3d.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 5 | 4 | ex 412 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 6 | 5 | ancld 550 | . . 3 ⊢ (𝜑 → (𝜒 → (𝜒 ∧ 𝜃))) |
| 7 | 6, 1 | sylibrd 259 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 8 | 3, 7 | impbid 212 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran4d 48718 functhinc 49097 thincsect 49114 thincinv 49116 grptcmon 49190 grptcepi 49191 |
| Copyright terms: Public domain | W3C validator |