Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dtrucor3 Structured version   Visualization version   GIF version

Theorem dtrucor3 47571
Description: An example of how ax-5 1911 without a distinct variable condition causes paradox in models of at least two objects. The hypothesis "dtrucor3.1" is provable from dtru 5435 in the ZF set theory. axc16nf 2252 and euae 2653 demonstrate that the violation of dtru 5435 leads to a model with only one object assuming its existence (ax-6 1969). The conclusion is also provable in the empty model ( see emptyal 1909). See also nf5 2276 and nf5i 2140 for the relation between unconditional ax-5 1911 and being not free. (Contributed by Zhi Wang, 23-Sep-2024.)
Hypotheses
Ref Expression
dtrucor3.1 ¬ ∀𝑥 𝑥 = 𝑦
dtrucor3.2 (𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦)
Assertion
Ref Expression
dtrucor3 𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtrucor3
StepHypRef Expression
1 ax6ev 1971 . 2 𝑥 𝑥 = 𝑦
2 dtrucor3.1 . . . 4 ¬ ∀𝑥 𝑥 = 𝑦
3 dtrucor3.2 . . . 4 (𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦)
42, 3mto 196 . . 3 ¬ 𝑥 = 𝑦
54nex 1800 . 2 ¬ ∃𝑥 𝑥 = 𝑦
61, 5pm2.24ii 120 1 𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1537  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-6 1969
This theorem depends on definitions:  df-bi 206  df-ex 1780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator