Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dtrucor3 Structured version   Visualization version   GIF version

Theorem dtrucor3 48898
Description: An example of how ax-5 1911 without a distinct variable condition causes paradox in models of at least two objects. The hypothesis "dtrucor3.1" is provable from dtru 5377 in the ZF set theory. axc16nf 2266 and euae 2655 demonstrate that the violation of dtru 5377 leads to a model with only one object assuming its existence (ax-6 1968). The conclusion is also provable in the empty model ( see emptyal 1909). See also nf5 2284 and nf5i 2149 for the relation between unconditional ax-5 1911 and being not free. (Contributed by Zhi Wang, 23-Sep-2024.)
Hypotheses
Ref Expression
dtrucor3.1 ¬ ∀𝑥 𝑥 = 𝑦
dtrucor3.2 (𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦)
Assertion
Ref Expression
dtrucor3 𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtrucor3
StepHypRef Expression
1 ax6ev 1970 . 2 𝑥 𝑥 = 𝑦
2 dtrucor3.1 . . . 4 ¬ ∀𝑥 𝑥 = 𝑦
3 dtrucor3.2 . . . 4 (𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦)
42, 3mto 197 . . 3 ¬ 𝑥 = 𝑦
54nex 1801 . 2 ¬ ∃𝑥 𝑥 = 𝑦
61, 5pm2.24ii 120 1 𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-6 1968
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator