Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dtrucor3 Structured version   Visualization version   GIF version

Theorem dtrucor3 48648
Description: An example of how ax-5 1908 without a distinct variable condition causes paradox in models of at least two objects. The hypothesis "dtrucor3.1" is provable from dtru 5447 in the ZF set theory. axc16nf 2261 and euae 2658 demonstrate that the violation of dtru 5447 leads to a model with only one object assuming its existence (ax-6 1965). The conclusion is also provable in the empty model ( see emptyal 1906). See also nf5 2281 and nf5i 2144 for the relation between unconditional ax-5 1908 and being not free. (Contributed by Zhi Wang, 23-Sep-2024.)
Hypotheses
Ref Expression
dtrucor3.1 ¬ ∀𝑥 𝑥 = 𝑦
dtrucor3.2 (𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦)
Assertion
Ref Expression
dtrucor3 𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtrucor3
StepHypRef Expression
1 ax6ev 1967 . 2 𝑥 𝑥 = 𝑦
2 dtrucor3.1 . . . 4 ¬ ∀𝑥 𝑥 = 𝑦
3 dtrucor3.2 . . . 4 (𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦)
42, 3mto 197 . . 3 ¬ 𝑥 = 𝑦
54nex 1797 . 2 ¬ ∃𝑥 𝑥 = 𝑦
61, 5pm2.24ii 120 1 𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1535  wex 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-6 1965
This theorem depends on definitions:  df-bi 207  df-ex 1777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator