Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biancomd | Structured version Visualization version GIF version |
Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
Ref | Expression |
---|---|
biancomd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
Ref | Expression |
---|---|
biancomd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | |
2 | ancom 461 | . 2 ⊢ ((𝜃 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃)) | |
3 | 1, 2 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ibar 529 rbaibd 541 pm4.71rd 563 anbi1cd 634 mpbiran2d 705 elpmg 8631 letri3 11060 mulsuble0b 11847 xrletri3 12888 qbtwnre 12933 iooneg 13203 invsym 17474 subsubc 17568 lsslss 20223 znleval 20762 restopn2 22328 elflim2 23115 ismet2 23486 mbfi1fseqlem4 24883 deg1ldg 25257 sincosq1sgn 25655 lgsquadlem3 26530 numclwwlkqhash 28739 rmounid 30843 naddcom 33835 dfrdg4 34253 bj-19.41t 34956 bj-0int 35272 mpbiran4d 46143 |
Copyright terms: Public domain | W3C validator |