MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biancomd Structured version   Visualization version   GIF version

Theorem biancomd 463
Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.)
Hypothesis
Ref Expression
biancomd.1 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
Assertion
Ref Expression
biancomd (𝜑 → (𝜓 ↔ (𝜒𝜃)))

Proof of Theorem biancomd
StepHypRef Expression
1 biancomd.1 . 2 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
2 ancom 460 . 2 ((𝜃𝜒) ↔ (𝜒𝜃))
31, 2bitrdi 287 1 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ibar  528  rbaibd  540  pm4.71rd  562  anbi1cd  635  mpbiran2d  708  naddcom  8721  naddsuc2  8740  elpmg  8884  letri3  11347  mulsuble0b  12141  xrletri3  13197  qbtwnre  13242  iooneg  13512  invsym  17807  subsubc  17899  lsslss  20960  znleval  21574  psdmvr  22174  restopn2  23186  elflim2  23973  ismet2  24344  mbfi1fseqlem4  25754  deg1ldg  26132  sincosq1sgn  26541  lgsquadlem3  27427  renegscl  28431  numclwwlkqhash  30395  rmounid  32515  dfrdg4  35953  bj-19.41t  36776  bj-0int  37103  orddif0suc  43286  dflim7  43291  mpbiran4d  48723
  Copyright terms: Public domain W3C validator