![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biancomd | Structured version Visualization version GIF version |
Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
Ref | Expression |
---|---|
biancomd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
Ref | Expression |
---|---|
biancomd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | |
2 | ancom 459 | . 2 ⊢ ((𝜃 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃)) | |
3 | 1, 2 | bitrdi 286 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: ibar 527 rbaibd 539 pm4.71rd 561 anbi1cd 632 mpbiran2d 704 naddcom 8683 elpmg 8839 letri3 11303 mulsuble0b 12090 xrletri3 13137 qbtwnre 13182 iooneg 13452 invsym 17713 subsubc 17807 lsslss 20716 znleval 21329 restopn2 22901 elflim2 23688 ismet2 24059 mbfi1fseqlem4 25468 deg1ldg 25845 sincosq1sgn 26244 lgsquadlem3 27121 numclwwlkqhash 29895 rmounid 32002 dfrdg4 35227 bj-19.41t 35955 bj-0int 36285 orddif0suc 42320 dflim7 42325 naddsuc2 42445 mpbiran4d 47570 |
Copyright terms: Public domain | W3C validator |