MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biancomd Structured version   Visualization version   GIF version

Theorem biancomd 463
Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.)
Hypothesis
Ref Expression
biancomd.1 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
Assertion
Ref Expression
biancomd (𝜑 → (𝜓 ↔ (𝜒𝜃)))

Proof of Theorem biancomd
StepHypRef Expression
1 biancomd.1 . 2 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
2 ancom 460 . 2 ((𝜃𝜒) ↔ (𝜒𝜃))
31, 2bitrdi 287 1 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ibar  528  rbaibd  540  pm4.71rd  562  anbi1cd  635  mpbiran2d  708  naddcom  8648  naddsuc2  8667  elpmg  8818  letri3  11265  mulsuble0b  12061  xrletri3  13120  qbtwnre  13165  iooneg  13438  invsym  17730  subsubc  17821  lsslss  20873  znleval  21470  psdmvr  22062  restopn2  23070  elflim2  23857  ismet2  24227  mbfi1fseqlem4  25625  deg1ldg  26003  sincosq1sgn  26413  lgsquadlem3  27299  renegscl  28355  numclwwlkqhash  30310  rmounid  32430  dfrdg4  35934  bj-19.41t  36757  bj-0int  37084  orddif0suc  43250  dflim7  43255  mpbiran4d  48776
  Copyright terms: Public domain W3C validator