MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biancomd Structured version   Visualization version   GIF version

Theorem biancomd 464
Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.)
Hypothesis
Ref Expression
biancomd.1 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
Assertion
Ref Expression
biancomd (𝜑 → (𝜓 ↔ (𝜒𝜃)))

Proof of Theorem biancomd
StepHypRef Expression
1 biancomd.1 . 2 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
2 ancom 461 . 2 ((𝜃𝜒) ↔ (𝜒𝜃))
31, 2bitrdi 287 1 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  ibar  529  rbaibd  541  pm4.71rd  563  anbi1cd  634  mpbiran2d  705  elpmg  8631  letri3  11060  mulsuble0b  11847  xrletri3  12888  qbtwnre  12933  iooneg  13203  invsym  17474  subsubc  17568  lsslss  20223  znleval  20762  restopn2  22328  elflim2  23115  ismet2  23486  mbfi1fseqlem4  24883  deg1ldg  25257  sincosq1sgn  25655  lgsquadlem3  26530  numclwwlkqhash  28739  rmounid  30843  naddcom  33835  dfrdg4  34253  bj-19.41t  34956  bj-0int  35272  mpbiran4d  46143
  Copyright terms: Public domain W3C validator