MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biancomd Structured version   Visualization version   GIF version

Theorem biancomd 463
Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.)
Hypothesis
Ref Expression
biancomd.1 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
Assertion
Ref Expression
biancomd (𝜑 → (𝜓 ↔ (𝜒𝜃)))

Proof of Theorem biancomd
StepHypRef Expression
1 biancomd.1 . 2 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
2 ancom 460 . 2 ((𝜃𝜒) ↔ (𝜒𝜃))
31, 2bitrdi 286 1 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  ibar  528  rbaibd  540  pm4.71rd  562  anbi1cd  633  mpbiran2d  704  elpmg  8589  letri3  10991  mulsuble0b  11777  xrletri3  12817  qbtwnre  12862  iooneg  13132  invsym  17391  subsubc  17484  lsslss  20138  znleval  20674  restopn2  22236  elflim2  23023  ismet2  23394  mbfi1fseqlem4  24788  deg1ldg  25162  sincosq1sgn  25560  lgsquadlem3  26435  numclwwlkqhash  28640  rmounid  30744  naddcom  33762  dfrdg4  34180  bj-19.41t  34883  bj-0int  35199  mpbiran4d  46031
  Copyright terms: Public domain W3C validator