Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biancomd | Structured version Visualization version GIF version |
Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
Ref | Expression |
---|---|
biancomd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
Ref | Expression |
---|---|
biancomd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | |
2 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃)) | |
3 | 1, 2 | bitrdi 286 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ibar 528 rbaibd 540 pm4.71rd 562 anbi1cd 633 mpbiran2d 704 elpmg 8589 letri3 10991 mulsuble0b 11777 xrletri3 12817 qbtwnre 12862 iooneg 13132 invsym 17391 subsubc 17484 lsslss 20138 znleval 20674 restopn2 22236 elflim2 23023 ismet2 23394 mbfi1fseqlem4 24788 deg1ldg 25162 sincosq1sgn 25560 lgsquadlem3 26435 numclwwlkqhash 28640 rmounid 30744 naddcom 33762 dfrdg4 34180 bj-19.41t 34883 bj-0int 35199 mpbiran4d 46031 |
Copyright terms: Public domain | W3C validator |