| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biancomd | Structured version Visualization version GIF version | ||
| Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| biancomd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| biancomd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃)) | |
| 3 | 1, 2 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ibar 528 rbaibd 540 pm4.71rd 562 anbi1cd 635 mpbiran2d 708 naddcom 8600 naddsuc2 8619 elpmg 8770 letri3 11201 mulsuble0b 11997 xrletri3 13056 qbtwnre 13101 iooneg 13374 invsym 17669 subsubc 17760 lsslss 20864 znleval 21461 psdmvr 22054 restopn2 23062 elflim2 23849 ismet2 24219 mbfi1fseqlem4 25617 deg1ldg 25995 sincosq1sgn 26405 lgsquadlem3 27291 renegscl 28367 numclwwlkqhash 30319 rmounid 32439 dfrdg4 35935 bj-19.41t 36758 bj-0int 37085 orddif0suc 43251 dflim7 43256 mpbiran4d 48792 |
| Copyright terms: Public domain | W3C validator |