| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biancomd | Structured version Visualization version GIF version | ||
| Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| biancomd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| biancomd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃)) | |
| 3 | 1, 2 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ibar 528 rbaibd 540 pm4.71rd 562 anbi1cd 635 mpbiran2d 708 naddcom 8623 naddsuc2 8642 elpmg 8793 letri3 11235 mulsuble0b 12031 xrletri3 13090 qbtwnre 13135 iooneg 13408 invsym 17704 subsubc 17795 lsslss 20899 znleval 21496 psdmvr 22089 restopn2 23097 elflim2 23884 ismet2 24254 mbfi1fseqlem4 25652 deg1ldg 26030 sincosq1sgn 26440 lgsquadlem3 27326 renegscl 28402 numclwwlkqhash 30354 rmounid 32474 dfrdg4 35932 bj-19.41t 36755 bj-0int 37082 orddif0suc 43250 dflim7 43255 mpbiran4d 48779 |
| Copyright terms: Public domain | W3C validator |