| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biancomd | Structured version Visualization version GIF version | ||
| Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| biancomd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| biancomd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃)) | |
| 3 | 1, 2 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ibar 528 rbaibd 540 pm4.71rd 562 anbi1cd 635 mpbiran2d 708 naddcom 8721 naddsuc2 8740 elpmg 8884 letri3 11347 mulsuble0b 12141 xrletri3 13197 qbtwnre 13242 iooneg 13512 invsym 17807 subsubc 17899 lsslss 20960 znleval 21574 psdmvr 22174 restopn2 23186 elflim2 23973 ismet2 24344 mbfi1fseqlem4 25754 deg1ldg 26132 sincosq1sgn 26541 lgsquadlem3 27427 renegscl 28431 numclwwlkqhash 30395 rmounid 32515 dfrdg4 35953 bj-19.41t 36776 bj-0int 37103 orddif0suc 43286 dflim7 43291 mpbiran4d 48723 |
| Copyright terms: Public domain | W3C validator |