| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biancomd | Structured version Visualization version GIF version | ||
| Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| biancomd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| biancomd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃)) | |
| 3 | 1, 2 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ibar 528 rbaibd 540 pm4.71rd 562 anbi1cd 635 mpbiran2d 708 naddcom 8597 naddsuc2 8616 elpmg 8767 letri3 11198 mulsuble0b 11994 xrletri3 13053 qbtwnre 13098 iooneg 13371 invsym 17669 subsubc 17760 lsslss 20894 znleval 21491 psdmvr 22084 restopn2 23092 elflim2 23879 ismet2 24248 mbfi1fseqlem4 25646 deg1ldg 26024 sincosq1sgn 26434 lgsquadlem3 27320 renegscl 28400 numclwwlkqhash 30355 rmounid 32474 dfrdg4 35995 bj-19.41t 36818 bj-0int 37145 orddif0suc 43371 dflim7 43376 mpbiran4d 48908 |
| Copyright terms: Public domain | W3C validator |