| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biancomd | Structured version Visualization version GIF version | ||
| Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| biancomd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| biancomd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃)) | |
| 3 | 1, 2 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ibar 528 rbaibd 540 pm4.71rd 562 anbi1cd 635 mpbiran2d 708 naddcom 8699 naddsuc2 8718 elpmg 8862 letri3 11325 mulsuble0b 12119 xrletri3 13175 qbtwnre 13220 iooneg 13493 invsym 17780 subsubc 17871 lsslss 20923 znleval 21520 psdmvr 22112 restopn2 23120 elflim2 23907 ismet2 24277 mbfi1fseqlem4 25676 deg1ldg 26054 sincosq1sgn 26464 lgsquadlem3 27350 renegscl 28406 numclwwlkqhash 30361 rmounid 32481 dfrdg4 35974 bj-19.41t 36797 bj-0int 37124 orddif0suc 43267 dflim7 43272 mpbiran4d 48757 |
| Copyright terms: Public domain | W3C validator |