| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biancomd | Structured version Visualization version GIF version | ||
| Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
| Ref | Expression |
|---|---|
| biancomd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| biancomd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | |
| 2 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃)) | |
| 3 | 1, 2 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ibar 528 rbaibd 540 pm4.71rd 562 anbi1cd 635 mpbiran2d 708 naddcom 8648 naddsuc2 8667 elpmg 8818 letri3 11265 mulsuble0b 12061 xrletri3 13120 qbtwnre 13165 iooneg 13438 invsym 17730 subsubc 17821 lsslss 20873 znleval 21470 psdmvr 22062 restopn2 23070 elflim2 23857 ismet2 24227 mbfi1fseqlem4 25625 deg1ldg 26003 sincosq1sgn 26413 lgsquadlem3 27299 renegscl 28355 numclwwlkqhash 30310 rmounid 32430 dfrdg4 35934 bj-19.41t 36757 bj-0int 37084 orddif0suc 43250 dflim7 43255 mpbiran4d 48776 |
| Copyright terms: Public domain | W3C validator |