MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biancomd Structured version   Visualization version   GIF version

Theorem biancomd 463
Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.)
Hypothesis
Ref Expression
biancomd.1 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
Assertion
Ref Expression
biancomd (𝜑 → (𝜓 ↔ (𝜒𝜃)))

Proof of Theorem biancomd
StepHypRef Expression
1 biancomd.1 . 2 (𝜑 → (𝜓 ↔ (𝜃𝜒)))
2 ancom 460 . 2 ((𝜃𝜒) ↔ (𝜒𝜃))
31, 2bitrdi 287 1 (𝜑 → (𝜓 ↔ (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ibar  528  rbaibd  540  pm4.71rd  562  anbi1cd  634  mpbiran2d  707  naddcom  8734  naddsuc2  8753  elpmg  8897  letri3  11371  mulsuble0b  12163  xrletri3  13212  qbtwnre  13257  iooneg  13527  invsym  17818  subsubc  17912  lsslss  20977  znleval  21591  restopn2  23199  elflim2  23986  ismet2  24357  mbfi1fseqlem4  25766  deg1ldg  26143  sincosq1sgn  26550  lgsquadlem3  27435  renegscl  28439  numclwwlkqhash  30398  rmounid  32514  dfrdg4  35907  bj-19.41t  36688  bj-0int  37015  orddif0suc  43170  dflim7  43175  mpbiran4d  48449
  Copyright terms: Public domain W3C validator