![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biancomd | Structured version Visualization version GIF version |
Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
Ref | Expression |
---|---|
biancomd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
Ref | Expression |
---|---|
biancomd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | |
2 | ancom 459 | . 2 ⊢ ((𝜃 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃)) | |
3 | 1, 2 | bitrdi 286 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: ibar 527 rbaibd 539 pm4.71rd 561 anbi1cd 633 mpbiran2d 706 naddcom 8701 elpmg 8860 letri3 11329 mulsuble0b 12116 xrletri3 13165 qbtwnre 13210 iooneg 13480 invsym 17744 subsubc 17838 lsslss 20849 znleval 21492 restopn2 23111 elflim2 23898 ismet2 24269 mbfi1fseqlem4 25678 deg1ldg 26058 sincosq1sgn 26463 lgsquadlem3 27345 renegscl 28282 numclwwlkqhash 30241 rmounid 32350 dfrdg4 35617 bj-19.41t 36321 bj-0int 36650 orddif0suc 42762 dflim7 42767 naddsuc2 42887 mpbiran4d 47982 |
Copyright terms: Public domain | W3C validator |