![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biancomd | Structured version Visualization version GIF version |
Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
Ref | Expression |
---|---|
biancomd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
Ref | Expression |
---|---|
biancomd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | |
2 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃)) | |
3 | 1, 2 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ibar 528 rbaibd 540 pm4.71rd 562 anbi1cd 634 mpbiran2d 707 naddcom 8734 naddsuc2 8753 elpmg 8897 letri3 11371 mulsuble0b 12163 xrletri3 13212 qbtwnre 13257 iooneg 13527 invsym 17818 subsubc 17912 lsslss 20977 znleval 21591 restopn2 23199 elflim2 23986 ismet2 24357 mbfi1fseqlem4 25766 deg1ldg 26143 sincosq1sgn 26550 lgsquadlem3 27435 renegscl 28439 numclwwlkqhash 30398 rmounid 32514 dfrdg4 35907 bj-19.41t 36688 bj-0int 37015 orddif0suc 43170 dflim7 43175 mpbiran4d 48449 |
Copyright terms: Public domain | W3C validator |