![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biancomd | Structured version Visualization version GIF version |
Description: Commuting conjunction in a biconditional, deduction form. (Contributed by Peter Mazsa, 3-Oct-2018.) |
Ref | Expression |
---|---|
biancomd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) |
Ref | Expression |
---|---|
biancomd | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biancomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∧ 𝜒))) | |
2 | ancom 460 | . 2 ⊢ ((𝜃 ∧ 𝜒) ↔ (𝜒 ∧ 𝜃)) | |
3 | 1, 2 | bitrdi 287 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ibar 528 rbaibd 540 pm4.71rd 562 anbi1cd 634 mpbiran2d 707 naddcom 8738 naddsuc2 8757 elpmg 8901 letri3 11375 mulsuble0b 12167 xrletri3 13216 qbtwnre 13261 iooneg 13531 invsym 17823 subsubc 17917 lsslss 20982 znleval 21596 restopn2 23206 elflim2 23993 ismet2 24364 mbfi1fseqlem4 25773 deg1ldg 26151 sincosq1sgn 26558 lgsquadlem3 27444 renegscl 28448 numclwwlkqhash 30407 rmounid 32523 dfrdg4 35915 bj-19.41t 36740 bj-0int 37067 orddif0suc 43230 dflim7 43235 mpbiran4d 48531 |
Copyright terms: Public domain | W3C validator |