Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptxor | Structured version Visualization version GIF version |
Description: Modus ponendo tollens 2, one of the "indemonstrables" in Stoic logic. Note that this uses exclusive-or ⊻. See rule 2 on [Lopez-Astorga] p. 12 , rule 4 on [Sanford] p. 39 and rule A4 in [Hitchcock] p. 5 . (Contributed by David A. Wheeler, 3-Jul-2016.) (Proof shortened by Wolf Lammen, 12-Nov-2017.) (Proof shortened by BJ, 19-Apr-2019.) |
Ref | Expression |
---|---|
mptxor.min | ⊢ 𝜑 |
mptxor.maj | ⊢ (𝜑 ⊻ 𝜓) |
Ref | Expression |
---|---|
mptxor | ⊢ ¬ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptxor.min | . 2 ⊢ 𝜑 | |
2 | mptxor.maj | . . 3 ⊢ (𝜑 ⊻ 𝜓) | |
3 | xornan 1512 | . . 3 ⊢ ((𝜑 ⊻ 𝜓) → ¬ (𝜑 ∧ 𝜓)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ¬ (𝜑 ∧ 𝜓) |
5 | 1, 4 | mptnan 1772 | 1 ⊢ ¬ 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ⊻ wxo 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-xor 1504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |