Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xornan | Structured version Visualization version GIF version |
Description: Exclusive disjunction implies alternative denial ("XOR implies NAND"). (Contributed by BJ, 19-Apr-2019.) |
Ref | Expression |
---|---|
xornan | ⊢ ((𝜑 ⊻ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor2 1510 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | |
2 | 1 | simprbi 496 | 1 ⊢ ((𝜑 ⊻ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ⊻ wxo 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-xor 1504 |
This theorem is referenced by: xornan2 1513 mptxor 1773 |
Copyright terms: Public domain | W3C validator |