![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xornan | Structured version Visualization version GIF version |
Description: XOR implies NAND. (Contributed by BJ, 19-Apr-2019.) |
Ref | Expression |
---|---|
xornan | ⊢ ((𝜑 ⊻ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor2 1588 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | |
2 | 1 | simprbi 492 | 1 ⊢ ((𝜑 ⊻ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∨ wo 836 ⊻ wxo 1582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-xor 1583 |
This theorem is referenced by: xornan2 1591 mptxor 1813 |
Copyright terms: Public domain | W3C validator |