MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xornan Structured version   Visualization version   GIF version

Theorem xornan 1515
Description: Exclusive disjunction implies alternative denial ("XOR implies NAND"). (Contributed by BJ, 19-Apr-2019.)
Assertion
Ref Expression
xornan ((𝜑𝜓) → ¬ (𝜑𝜓))

Proof of Theorem xornan
StepHypRef Expression
1 xor2 1513 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
21simprbi 497 1 ((𝜑𝜓) → ¬ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  wxo 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-xor 1507
This theorem is referenced by:  xornan2  1516  mptxor  1772
  Copyright terms: Public domain W3C validator