| Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nabi12i | Structured version Visualization version GIF version | ||
| Description: Constructor rule for ⊼. (Contributed by Anthony Hart, 2-Sep-2011.) |
| Ref | Expression |
|---|---|
| nabi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| nabi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| nabi12i.3 | ⊢ (𝜓 ⊼ 𝜃) |
| Ref | Expression |
|---|---|
| nabi12i | ⊢ (𝜑 ⊼ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nabi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | nabi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | nabi12i.3 | . . 3 ⊢ (𝜓 ⊼ 𝜃) | |
| 4 | 2, 3 | nabi1i 36417 | . 2 ⊢ (𝜑 ⊼ 𝜃) |
| 5 | 1, 4 | nabi2i 36418 | 1 ⊢ (𝜑 ⊼ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊼ wnan 1491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |