|   | Mathbox for Anthony Hart | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nabi1i | Structured version Visualization version GIF version | ||
| Description: Constructor rule for ⊼. (Contributed by Anthony Hart, 2-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| nabi1i.1 | ⊢ (𝜑 ↔ 𝜓) | 
| nabi1i.2 | ⊢ (𝜓 ⊼ 𝜒) | 
| Ref | Expression | 
|---|---|
| nabi1i | ⊢ (𝜑 ⊼ 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nabi1i.2 | . 2 ⊢ (𝜓 ⊼ 𝜒) | |
| 2 | nabi1i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . . 3 ⊢ (𝜓 ↔ 𝜑) | 
| 4 | 3 | nanbi1i 1503 | . 2 ⊢ ((𝜓 ⊼ 𝜒) ↔ (𝜑 ⊼ 𝜒)) | 
| 5 | 1, 4 | mpbi 230 | 1 ⊢ (𝜑 ⊼ 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ⊼ wnan 1490 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1491 | 
| This theorem is referenced by: nabi12i 36398 | 
| Copyright terms: Public domain | W3C validator |