Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nabi2i Structured version   Visualization version   GIF version

Theorem nabi2i 34486
Description: Constructor rule for . (Contributed by Anthony Hart, 2-Sep-2011.)
Hypotheses
Ref Expression
nabi2i.1 (𝜑𝜓)
nabi2i.2 (𝜒𝜓)
Assertion
Ref Expression
nabi2i (𝜒𝜑)

Proof of Theorem nabi2i
StepHypRef Expression
1 nabi2i.2 . 2 (𝜒𝜓)
2 nabi2i.1 . . . 4 (𝜑𝜓)
32bicomi 227 . . 3 (𝜓𝜑)
43nanbi2i 1501 . 2 ((𝜒𝜓) ↔ (𝜒𝜑))
51, 4mpbi 233 1 (𝜒𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wnan 1487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-nan 1488
This theorem is referenced by:  nabi12i  34487
  Copyright terms: Public domain W3C validator