Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nabi2i | Structured version Visualization version GIF version |
Description: Constructor rule for ⊼. (Contributed by Anthony Hart, 2-Sep-2011.) |
Ref | Expression |
---|---|
nabi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
nabi2i.2 | ⊢ (𝜒 ⊼ 𝜓) |
Ref | Expression |
---|---|
nabi2i | ⊢ (𝜒 ⊼ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nabi2i.2 | . 2 ⊢ (𝜒 ⊼ 𝜓) | |
2 | nabi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bicomi 223 | . . 3 ⊢ (𝜓 ↔ 𝜑) |
4 | 3 | nanbi2i 1500 | . 2 ⊢ ((𝜒 ⊼ 𝜓) ↔ (𝜒 ⊼ 𝜑)) |
5 | 1, 4 | mpbi 229 | 1 ⊢ (𝜒 ⊼ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊼ wnan 1486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-nan 1487 |
This theorem is referenced by: nabi12i 34585 |
Copyright terms: Public domain | W3C validator |