| Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nabi2i | Structured version Visualization version GIF version | ||
| Description: Constructor rule for ⊼. (Contributed by Anthony Hart, 2-Sep-2011.) |
| Ref | Expression |
|---|---|
| nabi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| nabi2i.2 | ⊢ (𝜒 ⊼ 𝜓) |
| Ref | Expression |
|---|---|
| nabi2i | ⊢ (𝜒 ⊼ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nabi2i.2 | . 2 ⊢ (𝜒 ⊼ 𝜓) | |
| 2 | nabi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bicomi 224 | . . 3 ⊢ (𝜓 ↔ 𝜑) |
| 4 | 3 | nanbi2i 1505 | . 2 ⊢ ((𝜒 ⊼ 𝜓) ↔ (𝜒 ⊼ 𝜑)) |
| 5 | 1, 4 | mpbi 230 | 1 ⊢ (𝜒 ⊼ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊼ wnan 1491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 |
| This theorem is referenced by: nabi12i 36419 |
| Copyright terms: Public domain | W3C validator |