MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naev2 Structured version   Visualization version   GIF version

Theorem naev2 2067
Description: Generalization of hbnaev 2068. (Contributed by Wolf Lammen, 9-Apr-2021.)
Assertion
Ref Expression
naev2 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑡 𝑡 = 𝑢)
Distinct variable group:   𝑢,𝑡

Proof of Theorem naev2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 naev 2066 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑣 𝑣 = 𝑤)
2 ax-5 1918 . 2 (¬ ∀𝑣 𝑣 = 𝑤 → ∀𝑧 ¬ ∀𝑣 𝑣 = 𝑤)
3 naev 2066 . . 3 (¬ ∀𝑣 𝑣 = 𝑤 → ¬ ∀𝑡 𝑡 = 𝑢)
43alimi 1819 . 2 (∀𝑧 ¬ ∀𝑣 𝑣 = 𝑤 → ∀𝑧 ¬ ∀𝑡 𝑡 = 𝑢)
51, 2, 43syl 18 1 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑡 𝑡 = 𝑢)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788
This theorem is referenced by:  hbnaev  2068
  Copyright terms: Public domain W3C validator