MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbnaev Structured version   Visualization version   GIF version

Theorem hbnaev 2058
Description: Any variable is free in ¬ ∀𝑥𝑥 = 𝑦, if 𝑥 and 𝑦 are distinct. This condition is dropped in hbnae 2427, at the expense of more axiom dependencies. Instance of naev2 2057. (Contributed by NM, 13-May-1993.) (Revised by Wolf Lammen, 9-Apr-2021.)
Assertion
Ref Expression
hbnaev (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦

Proof of Theorem hbnaev
StepHypRef Expression
1 naev2 2057 1 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775
This theorem is referenced by:  nfnaew  2138  euae  2651
  Copyright terms: Public domain W3C validator