MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanan Structured version   Visualization version   GIF version

Theorem nanan 1488
Description: Conjunction in terms of alternative denial. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
nanan ((𝜑𝜓) ↔ ¬ (𝜑𝜓))

Proof of Theorem nanan
StepHypRef Expression
1 df-nan 1487 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
21con2bii 358 1 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wnan 1486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-nan 1487
This theorem is referenced by:  nannan  1492  nanass  1505
  Copyright terms: Public domain W3C validator