| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nanan | Structured version Visualization version GIF version | ||
| Description: Conjunction in terms of alternative denial. (Contributed by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| nanan | ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ⊼ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nan 1492 | . 2 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 2 | 1 | con2bii 357 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ⊼ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ⊼ wnan 1491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-nan 1492 |
| This theorem is referenced by: nannan 1497 nanass 1510 |
| Copyright terms: Public domain | W3C validator |