MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nannan Structured version   Visualization version   GIF version

Theorem nannan 1489
Description: Nested alternative denials. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 26-Jun-2020.)
Assertion
Ref Expression
nannan ((𝜑 ⊼ (𝜓𝜒)) ↔ (𝜑 → (𝜓𝜒)))

Proof of Theorem nannan
StepHypRef Expression
1 dfnan2 1486 . 2 ((𝜑 ⊼ (𝜓𝜒)) ↔ (𝜑 → ¬ (𝜓𝜒)))
2 nanan 1485 . . 3 ((𝜓𝜒) ↔ ¬ (𝜓𝜒))
32imbi2i 335 . 2 ((𝜑 → (𝜓𝜒)) ↔ (𝜑 → ¬ (𝜓𝜒)))
41, 3bitr4i 277 1 ((𝜑 ⊼ (𝜓𝜒)) ↔ (𝜑 → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wnan 1483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-nan 1484
This theorem is referenced by:  nanim  1490  nanbi  1492  nanass  1502  nic-mp  1675  nic-ax  1677  waj-ax  34530  lukshef-ax2  34531  arg-ax  34532
  Copyright terms: Public domain W3C validator