MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nannan Structured version   Visualization version   GIF version

Theorem nannan 1497
Description: Nested alternative denials. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 26-Jun-2020.)
Assertion
Ref Expression
nannan ((𝜑 ⊼ (𝜓𝜒)) ↔ (𝜑 → (𝜓𝜒)))

Proof of Theorem nannan
StepHypRef Expression
1 dfnan2 1494 . 2 ((𝜑 ⊼ (𝜓𝜒)) ↔ (𝜑 → ¬ (𝜓𝜒)))
2 nanan 1493 . . 3 ((𝜓𝜒) ↔ ¬ (𝜓𝜒))
32imbi2i 336 . 2 ((𝜑 → (𝜓𝜒)) ↔ (𝜑 → ¬ (𝜓𝜒)))
41, 3bitr4i 278 1 ((𝜑 ⊼ (𝜓𝜒)) ↔ (𝜑 → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wnan 1491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-nan 1492
This theorem is referenced by:  nanim  1498  nanbi  1500  nanass  1510  nic-mp  1671  nic-ax  1673  waj-ax  36415  lukshef-ax2  36416  arg-ax  36417
  Copyright terms: Public domain W3C validator