| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nannan | Structured version Visualization version GIF version | ||
| Description: Nested alternative denials. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 26-Jun-2020.) |
| Ref | Expression |
|---|---|
| nannan | ⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ↔ (𝜑 → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnan2 1494 | . 2 ⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ↔ (𝜑 → ¬ (𝜓 ⊼ 𝜒))) | |
| 2 | nanan 1493 | . . 3 ⊢ ((𝜓 ∧ 𝜒) ↔ ¬ (𝜓 ⊼ 𝜒)) | |
| 3 | 2 | imbi2i 336 | . 2 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ (𝜑 → ¬ (𝜓 ⊼ 𝜒))) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ↔ (𝜑 → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ⊼ wnan 1491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 |
| This theorem is referenced by: nanim 1498 nanbi 1500 nanass 1510 nic-mp 1671 nic-ax 1673 waj-ax 36415 lukshef-ax2 36416 arg-ax 36417 |
| Copyright terms: Public domain | W3C validator |