MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnan2 Structured version   Visualization version   GIF version

Theorem dfnan2 1486
Description: Alternative denial in terms of our primitive connectives (implication and negation). (Contributed by WL, 26-Jun-2020.)
Assertion
Ref Expression
dfnan2 ((𝜑𝜓) ↔ (𝜑 → ¬ 𝜓))

Proof of Theorem dfnan2
StepHypRef Expression
1 df-nan 1484 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 imnan 399 . 2 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
31, 2bitr4i 277 1 ((𝜑𝜓) ↔ (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wnan 1483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-nan 1484
This theorem is referenced by:  nancom  1488  nannan  1489  nannot  1491  nanbi1  1493
  Copyright terms: Public domain W3C validator