MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1i Structured version   Visualization version   GIF version

Theorem necon1i 2976
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.)
Hypothesis
Ref Expression
necon1i.1 (𝐴𝐵𝐶 = 𝐷)
Assertion
Ref Expression
necon1i (𝐶𝐷𝐴 = 𝐵)

Proof of Theorem necon1i
StepHypRef Expression
1 df-ne 2943 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1i.1 . . 3 (𝐴𝐵𝐶 = 𝐷)
31, 2sylbir 234 . 2 𝐴 = 𝐵𝐶 = 𝐷)
43necon1ai 2970 1 (𝐶𝐷𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator