MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2i Structured version   Visualization version   GIF version

Theorem necon2i 2960
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.)
Hypothesis
Ref Expression
necon2i.1 (𝐴 = 𝐵𝐶𝐷)
Assertion
Ref Expression
necon2i (𝐶 = 𝐷𝐴𝐵)

Proof of Theorem necon2i
StepHypRef Expression
1 necon2i.1 . . 3 (𝐴 = 𝐵𝐶𝐷)
21neneqd 2931 . 2 (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷)
32necon2ai 2955 1 (𝐶 = 𝐷𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2927
This theorem is referenced by:  cmpfi  23302  mcubic  26764  cubic2  26765  2sqlem11  27347  zarcmplem  33878  ovoliunnfl  37663  voliunnfl  37665  volsupnfl  37666  mncn0  43135  aaitgo  43158  usgrexmpl2trifr  48032
  Copyright terms: Public domain W3C validator