| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3i | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3i.1 | ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| necon3i | ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3i.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) | |
| 2 | 1 | necon3ai 2951 | . 2 ⊢ (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2933 | 1 ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: difn0 4333 imadisjlnd 6055 xpnz 6135 unixp 6258 inf3lem2 9589 infeq5 9597 cantnflem1 9649 iunfictbso 10074 rankcf 10737 hashfun 14409 hashge3el3dif 14459 abssubne0 15290 expnprm 16880 grpn0 18910 pmtr3ncomlem2 19411 pgpfaclem2 20021 isdrng2 20659 gzrngunit 21357 zringunit 21383 prmirredlem 21389 uvcf1 21708 lindfrn 21737 mpfrcl 21999 ply1frcl 22212 dfac14lem 23511 flimclslem 23878 lebnumlem3 24869 pmltpclem2 25357 i1fmullem 25602 fta1glem1 26080 fta1blem 26083 dgrcolem1 26186 plydivlem4 26211 plyrem 26220 facth 26221 fta1lem 26222 vieta1lem1 26225 vieta1lem2 26226 vieta1 26227 aalioulem2 26248 geolim3 26254 logcj 26522 argregt0 26526 argimgt0 26528 argimlt0 26529 logneg2 26531 tanarg 26535 logtayl 26576 cxpsqrt 26619 cxpcn3lem 26664 cxpcn3 26665 dcubic2 26761 dcubic 26763 cubic 26766 asinlem 26785 atandmcj 26826 atancj 26827 atanlogsublem 26832 bndatandm 26846 birthdaylem1 26868 basellem4 27001 dchrn0 27168 lgsne0 27253 usgr2trlncl 29697 nmlno0lem 30729 nmlnop0iALT 31931 eldmne0 32559 preimane 32601 prmidl0 33428 constrrtll 33728 cntnevol 34225 signsvtn0 34568 signstfveq0a 34574 signstfveq0 34575 nepss 35712 elima4 35770 heicant 37656 totbndbnd 37790 cdleme3c 40231 cdleme7e 40248 sn-1ne2 42260 sn-0ne2 42401 uvcn0 42537 compne 44437 stoweidlem39 46044 rrx2vlinest 48734 rrx2linesl 48736 elfvne0 48841 lanrcl 49614 ranrcl 49615 rellan 49616 relran 49617 |
| Copyright terms: Public domain | W3C validator |