Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3i | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon3i.1 | ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
necon3i | ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3i.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) | |
2 | 1 | necon3ai 2969 | . 2 ⊢ (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2951 | 1 ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2945 |
This theorem is referenced by: difn0 4303 xpnz 6059 unixp 6182 inf3lem2 9348 infeq5 9356 cantnflem1 9408 iunfictbso 9854 rankcf 10517 hashfun 14133 hashge3el3dif 14181 abssubne0 15009 expnprm 16584 grpn0 18592 pmtr3ncomlem2 19063 pgpfaclem2 19666 isdrng2 19982 gzrngunit 20645 zringunit 20669 prmirredlem 20675 uvcf1 20980 lindfrn 21009 mpfrcl 21276 ply1frcl 21465 dfac14lem 22749 flimclslem 23116 lebnumlem3 24107 pmltpclem2 24594 i1fmullem 24839 fta1glem1 25311 fta1blem 25314 dgrcolem1 25415 plydivlem4 25437 plyrem 25446 facth 25447 fta1lem 25448 vieta1lem1 25451 vieta1lem2 25452 vieta1 25453 aalioulem2 25474 geolim3 25480 logcj 25742 argregt0 25746 argimgt0 25748 argimlt0 25749 logneg2 25751 tanarg 25755 logtayl 25796 cxpsqrt 25839 cxpcn3lem 25881 cxpcn3 25882 dcubic2 25975 dcubic 25977 cubic 25980 asinlem 25999 atandmcj 26040 atancj 26041 atanlogsublem 26046 bndatandm 26060 birthdaylem1 26082 basellem4 26214 dchrn0 26379 lgsne0 26464 usgr2trlncl 28107 nmlno0lem 29134 nmlnop0iALT 30336 eldmne0 30942 preimane 30986 prmidl0 31605 cntnevol 32175 signsvtn0 32528 signstfveq0a 32534 signstfveq0 32535 nepss 33641 elima4 33729 heicant 35791 totbndbnd 35926 cdleme3c 38223 cdleme7e 38240 uvcn0 40245 sn-1ne2 40275 sn-0ne2 40369 imadisjlnd 41724 compne 42012 stoweidlem39 43534 rrx2vlinest 46039 rrx2linesl 46041 elfvne0 46128 |
Copyright terms: Public domain | W3C validator |