| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3i | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3i.1 | ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| necon3i | ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3i.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) | |
| 2 | 1 | necon3ai 2953 | . 2 ⊢ (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2935 | 1 ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: difn0 4312 imadisjlnd 6025 xpnz 6101 unixp 6224 inf3lem2 9514 infeq5 9522 cantnflem1 9574 iunfictbso 10000 rankcf 10663 hashfun 14339 hashge3el3dif 14389 abssubne0 15219 expnprm 16809 grpn0 18879 pmtr3ncomlem2 19381 pgpfaclem2 19991 isdrng2 20653 gzrngunit 21365 zringunit 21398 prmirredlem 21404 uvcf1 21724 lindfrn 21753 mpfrcl 22015 ply1frcl 22228 dfac14lem 23527 flimclslem 23894 lebnumlem3 24884 pmltpclem2 25372 i1fmullem 25617 fta1glem1 26095 fta1blem 26098 dgrcolem1 26201 plydivlem4 26226 plyrem 26235 facth 26236 fta1lem 26237 vieta1lem1 26240 vieta1lem2 26241 vieta1 26242 aalioulem2 26263 geolim3 26269 logcj 26537 argregt0 26541 argimgt0 26543 argimlt0 26544 logneg2 26546 tanarg 26550 logtayl 26591 cxpsqrt 26634 cxpcn3lem 26679 cxpcn3 26680 dcubic2 26776 dcubic 26778 cubic 26781 asinlem 26800 atandmcj 26841 atancj 26842 atanlogsublem 26847 bndatandm 26861 birthdaylem1 26883 basellem4 27016 dchrn0 27183 lgsne0 27268 usgr2trlncl 29733 nmlno0lem 30765 nmlnop0iALT 31967 eldmne0 32601 preimane 32644 prmidl0 33407 constrrtll 33736 cntnevol 34233 signsvtn0 34575 signstfveq0a 34581 signstfveq0 34582 nepss 35754 elima4 35812 heicant 37695 totbndbnd 37829 cdleme3c 40269 cdleme7e 40286 sn-1ne2 42298 sn-0ne2 42439 uvcn0 42575 compne 44473 stoweidlem39 46077 sinnpoly 46922 rrx2vlinest 48773 rrx2linesl 48775 elfvne0 48880 lanrcl 49653 ranrcl 49654 rellan 49655 relran 49656 |
| Copyright terms: Public domain | W3C validator |