| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3i | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3i.1 | ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| necon3i | ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3i.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) | |
| 2 | 1 | necon3ai 2957 | . 2 ⊢ (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2939 | 1 ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: difn0 4342 imadisjlnd 6068 xpnz 6148 unixp 6271 inf3lem2 9643 infeq5 9651 cantnflem1 9703 iunfictbso 10128 rankcf 10791 hashfun 14455 hashge3el3dif 14505 abssubne0 15335 expnprm 16922 grpn0 18954 pmtr3ncomlem2 19455 pgpfaclem2 20065 isdrng2 20703 gzrngunit 21401 zringunit 21427 prmirredlem 21433 uvcf1 21752 lindfrn 21781 mpfrcl 22043 ply1frcl 22256 dfac14lem 23555 flimclslem 23922 lebnumlem3 24913 pmltpclem2 25402 i1fmullem 25647 fta1glem1 26125 fta1blem 26128 dgrcolem1 26231 plydivlem4 26256 plyrem 26265 facth 26266 fta1lem 26267 vieta1lem1 26270 vieta1lem2 26271 vieta1 26272 aalioulem2 26293 geolim3 26299 logcj 26567 argregt0 26571 argimgt0 26573 argimlt0 26574 logneg2 26576 tanarg 26580 logtayl 26621 cxpsqrt 26664 cxpcn3lem 26709 cxpcn3 26710 dcubic2 26806 dcubic 26808 cubic 26811 asinlem 26830 atandmcj 26871 atancj 26872 atanlogsublem 26877 bndatandm 26891 birthdaylem1 26913 basellem4 27046 dchrn0 27213 lgsne0 27298 usgr2trlncl 29742 nmlno0lem 30774 nmlnop0iALT 31976 eldmne0 32606 preimane 32648 prmidl0 33465 constrrtll 33765 cntnevol 34259 signsvtn0 34602 signstfveq0a 34608 signstfveq0 34609 nepss 35735 elima4 35793 heicant 37679 totbndbnd 37813 cdleme3c 40249 cdleme7e 40266 sn-1ne2 42315 sn-0ne2 42449 uvcn0 42565 compne 44465 stoweidlem39 46068 rrx2vlinest 48721 rrx2linesl 48723 elfvne0 48827 lanrcl 49496 ranrcl 49497 rellan 49498 relran 49499 |
| Copyright terms: Public domain | W3C validator |