Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3i | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon3i.1 | ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
necon3i | ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3i.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) | |
2 | 1 | necon3ai 2966 | . 2 ⊢ (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2948 | 1 ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2942 |
This theorem is referenced by: difn0 4304 xpnz 6077 unixp 6200 inf3lem2 9431 infeq5 9439 cantnflem1 9491 iunfictbso 9916 rankcf 10579 hashfun 14197 hashge3el3dif 14245 abssubne0 15073 expnprm 16648 grpn0 18656 pmtr3ncomlem2 19127 pgpfaclem2 19730 isdrng2 20046 gzrngunit 20709 zringunit 20733 prmirredlem 20739 uvcf1 21044 lindfrn 21073 mpfrcl 21340 ply1frcl 21529 dfac14lem 22813 flimclslem 23180 lebnumlem3 24171 pmltpclem2 24658 i1fmullem 24903 fta1glem1 25375 fta1blem 25378 dgrcolem1 25479 plydivlem4 25501 plyrem 25510 facth 25511 fta1lem 25512 vieta1lem1 25515 vieta1lem2 25516 vieta1 25517 aalioulem2 25538 geolim3 25544 logcj 25806 argregt0 25810 argimgt0 25812 argimlt0 25813 logneg2 25815 tanarg 25819 logtayl 25860 cxpsqrt 25903 cxpcn3lem 25945 cxpcn3 25946 dcubic2 26039 dcubic 26041 cubic 26044 asinlem 26063 atandmcj 26104 atancj 26105 atanlogsublem 26110 bndatandm 26124 birthdaylem1 26146 basellem4 26278 dchrn0 26443 lgsne0 26528 usgr2trlncl 28173 nmlno0lem 29200 nmlnop0iALT 30402 eldmne0 31008 preimane 31052 prmidl0 31671 cntnevol 32241 signsvtn0 32594 signstfveq0a 32600 signstfveq0 32601 nepss 33707 elima4 33795 heicant 35856 totbndbnd 35991 cdleme3c 38286 cdleme7e 38303 uvcn0 40302 sn-1ne2 40332 sn-0ne2 40426 imadisjlnd 41809 compne 42097 stoweidlem39 43629 rrx2vlinest 46145 rrx2linesl 46147 elfvne0 46234 |
Copyright terms: Public domain | W3C validator |