| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3i | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3i.1 | ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| necon3i | ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3i.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) | |
| 2 | 1 | necon3ai 2950 | . 2 ⊢ (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2932 | 1 ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: difn0 4326 imadisjlnd 6041 xpnz 6120 unixp 6243 inf3lem2 9558 infeq5 9566 cantnflem1 9618 iunfictbso 10043 rankcf 10706 hashfun 14378 hashge3el3dif 14428 abssubne0 15259 expnprm 16849 grpn0 18879 pmtr3ncomlem2 19380 pgpfaclem2 19990 isdrng2 20628 gzrngunit 21326 zringunit 21352 prmirredlem 21358 uvcf1 21677 lindfrn 21706 mpfrcl 21968 ply1frcl 22181 dfac14lem 23480 flimclslem 23847 lebnumlem3 24838 pmltpclem2 25326 i1fmullem 25571 fta1glem1 26049 fta1blem 26052 dgrcolem1 26155 plydivlem4 26180 plyrem 26189 facth 26190 fta1lem 26191 vieta1lem1 26194 vieta1lem2 26195 vieta1 26196 aalioulem2 26217 geolim3 26223 logcj 26491 argregt0 26495 argimgt0 26497 argimlt0 26498 logneg2 26500 tanarg 26504 logtayl 26545 cxpsqrt 26588 cxpcn3lem 26633 cxpcn3 26634 dcubic2 26730 dcubic 26732 cubic 26735 asinlem 26754 atandmcj 26795 atancj 26796 atanlogsublem 26801 bndatandm 26815 birthdaylem1 26837 basellem4 26970 dchrn0 27137 lgsne0 27222 usgr2trlncl 29663 nmlno0lem 30695 nmlnop0iALT 31897 eldmne0 32525 preimane 32567 prmidl0 33394 constrrtll 33694 cntnevol 34191 signsvtn0 34534 signstfveq0a 34540 signstfveq0 34541 nepss 35678 elima4 35736 heicant 37622 totbndbnd 37756 cdleme3c 40197 cdleme7e 40214 sn-1ne2 42226 sn-0ne2 42367 uvcn0 42503 compne 44403 stoweidlem39 46010 sinnpoly 46865 rrx2vlinest 48703 rrx2linesl 48705 elfvne0 48810 lanrcl 49583 ranrcl 49584 rellan 49585 relran 49586 |
| Copyright terms: Public domain | W3C validator |