| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3i | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3i.1 | ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| necon3i | ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3i.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) | |
| 2 | 1 | necon3ai 2950 | . 2 ⊢ (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2932 | 1 ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: difn0 4330 imadisjlnd 6052 xpnz 6132 unixp 6255 inf3lem2 9582 infeq5 9590 cantnflem1 9642 iunfictbso 10067 rankcf 10730 hashfun 14402 hashge3el3dif 14452 abssubne0 15283 expnprm 16873 grpn0 18903 pmtr3ncomlem2 19404 pgpfaclem2 20014 isdrng2 20652 gzrngunit 21350 zringunit 21376 prmirredlem 21382 uvcf1 21701 lindfrn 21730 mpfrcl 21992 ply1frcl 22205 dfac14lem 23504 flimclslem 23871 lebnumlem3 24862 pmltpclem2 25350 i1fmullem 25595 fta1glem1 26073 fta1blem 26076 dgrcolem1 26179 plydivlem4 26204 plyrem 26213 facth 26214 fta1lem 26215 vieta1lem1 26218 vieta1lem2 26219 vieta1 26220 aalioulem2 26241 geolim3 26247 logcj 26515 argregt0 26519 argimgt0 26521 argimlt0 26522 logneg2 26524 tanarg 26528 logtayl 26569 cxpsqrt 26612 cxpcn3lem 26657 cxpcn3 26658 dcubic2 26754 dcubic 26756 cubic 26759 asinlem 26778 atandmcj 26819 atancj 26820 atanlogsublem 26825 bndatandm 26839 birthdaylem1 26861 basellem4 26994 dchrn0 27161 lgsne0 27246 usgr2trlncl 29690 nmlno0lem 30722 nmlnop0iALT 31924 eldmne0 32552 preimane 32594 prmidl0 33421 constrrtll 33721 cntnevol 34218 signsvtn0 34561 signstfveq0a 34567 signstfveq0 34568 nepss 35705 elima4 35763 heicant 37649 totbndbnd 37783 cdleme3c 40224 cdleme7e 40241 sn-1ne2 42253 sn-0ne2 42394 uvcn0 42530 compne 44430 stoweidlem39 46037 sinnpoly 46892 rrx2vlinest 48730 rrx2linesl 48732 elfvne0 48837 lanrcl 49610 ranrcl 49611 rellan 49612 relran 49613 |
| Copyright terms: Public domain | W3C validator |