| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3i | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon3i.1 | ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| necon3i | ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3i.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) | |
| 2 | 1 | necon3ai 2950 | . 2 ⊢ (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | neqned 2932 | 1 ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: difn0 4318 imadisjlnd 6032 xpnz 6108 unixp 6230 inf3lem2 9525 infeq5 9533 cantnflem1 9585 iunfictbso 10008 rankcf 10671 hashfun 14344 hashge3el3dif 14394 abssubne0 15224 expnprm 16814 grpn0 18850 pmtr3ncomlem2 19353 pgpfaclem2 19963 isdrng2 20628 gzrngunit 21340 zringunit 21373 prmirredlem 21379 uvcf1 21699 lindfrn 21728 mpfrcl 21990 ply1frcl 22203 dfac14lem 23502 flimclslem 23869 lebnumlem3 24860 pmltpclem2 25348 i1fmullem 25593 fta1glem1 26071 fta1blem 26074 dgrcolem1 26177 plydivlem4 26202 plyrem 26211 facth 26212 fta1lem 26213 vieta1lem1 26216 vieta1lem2 26217 vieta1 26218 aalioulem2 26239 geolim3 26245 logcj 26513 argregt0 26517 argimgt0 26519 argimlt0 26520 logneg2 26522 tanarg 26526 logtayl 26567 cxpsqrt 26610 cxpcn3lem 26655 cxpcn3 26656 dcubic2 26752 dcubic 26754 cubic 26757 asinlem 26776 atandmcj 26817 atancj 26818 atanlogsublem 26823 bndatandm 26837 birthdaylem1 26859 basellem4 26992 dchrn0 27159 lgsne0 27244 usgr2trlncl 29705 nmlno0lem 30737 nmlnop0iALT 31939 eldmne0 32570 preimane 32613 prmidl0 33387 constrrtll 33698 cntnevol 34195 signsvtn0 34538 signstfveq0a 34544 signstfveq0 34545 nepss 35691 elima4 35749 heicant 37635 totbndbnd 37769 cdleme3c 40209 cdleme7e 40226 sn-1ne2 42238 sn-0ne2 42379 uvcn0 42515 compne 44414 stoweidlem39 46020 sinnpoly 46875 rrx2vlinest 48726 rrx2linesl 48728 elfvne0 48833 lanrcl 49606 ranrcl 49607 rellan 49608 relran 49609 |
| Copyright terms: Public domain | W3C validator |