Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3i | Structured version Visualization version GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.) (Proof shortened by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
necon3i.1 | ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
necon3i | ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3i.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) | |
2 | 1 | necon3ai 2965 | . 2 ⊢ (𝐶 ≠ 𝐷 → ¬ 𝐴 = 𝐵) |
3 | 2 | neqned 2947 | 1 ⊢ (𝐶 ≠ 𝐷 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-ne 2941 |
This theorem is referenced by: difn0 4279 xpnz 6022 unixp 6145 inf3lem2 9244 infeq5 9252 cantnflem1 9304 iunfictbso 9728 rankcf 10391 hashfun 14004 hashge3el3dif 14052 abssubne0 14880 expnprm 16455 grpn0 18399 pmtr3ncomlem2 18866 pgpfaclem2 19469 isdrng2 19777 gzrngunit 20429 zringunit 20453 prmirredlem 20459 uvcf1 20754 lindfrn 20783 mpfrcl 21045 ply1frcl 21234 dfac14lem 22514 flimclslem 22881 lebnumlem3 23860 pmltpclem2 24346 i1fmullem 24591 fta1glem1 25063 fta1blem 25066 dgrcolem1 25167 plydivlem4 25189 plyrem 25198 facth 25199 fta1lem 25200 vieta1lem1 25203 vieta1lem2 25204 vieta1 25205 aalioulem2 25226 geolim3 25232 logcj 25494 argregt0 25498 argimgt0 25500 argimlt0 25501 logneg2 25503 tanarg 25507 logtayl 25548 cxpsqrt 25591 cxpcn3lem 25633 cxpcn3 25634 dcubic2 25727 dcubic 25729 cubic 25732 asinlem 25751 atandmcj 25792 atancj 25793 atanlogsublem 25798 bndatandm 25812 birthdaylem1 25834 basellem4 25966 dchrn0 26131 lgsne0 26216 usgr2trlncl 27847 nmlno0lem 28874 nmlnop0iALT 30076 eldmne0 30682 preimane 30727 prmidl0 31340 cntnevol 31908 signsvtn0 32261 signstfveq0a 32267 signstfveq0 32268 nepss 33377 elima4 33469 heicant 35549 totbndbnd 35684 cdleme3c 37981 cdleme7e 37998 uvcn0 39977 sn-1ne2 40002 sn-0ne2 40097 imadisjlnd 41448 compne 41732 stoweidlem39 43255 rrx2vlinest 45760 rrx2linesl 45762 elfvne0 45849 |
Copyright terms: Public domain | W3C validator |