| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbir | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by NM, 3-Jan-1993.) |
| Ref | Expression |
|---|---|
| sylbir.1 | ⊢ (𝜓 ↔ 𝜑) |
| sylbir.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| sylbir | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ (𝜑 → 𝜓) |
| 3 | sylbir.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
| Copyright terms: Public domain | W3C validator |